❶ 计量经济学中,什么叫近似误差
误差指估计值和真实值之间的差异,由于存在测量误差、数据收集方法、数据性质等原因,真实值往往不可观测,只能用一些能观测到的值替代。典型地,随机干扰项在计量模型中是不可观测的,就用估计出来的残差近似它,由于是近似值,两者之间必然有误差。
随着抽样样本不同,估计量的值就会变化,变化就会涉及到不确定性,衡量不确定性的方式用估计值的方差。在OLS估计量中标准误差其实就是对估计量的方差的一个估计值,它越大表明其波动越大,你这句话应该改为“估计值与真值的估计标准误差越小,估计值与真值的近似误差越小”。事实上,对估计量误差具有最小方差的要求是衡量优秀估计量的一个准则,称为有效性——作为优秀估计量它应该是所有估计量中具有最小方差的量。另外几个准则包括“无偏性”“一致性”等,具体可以去寻找估计量的“高斯-马尔可夫定理”。
❷ 线性回归的基本假设
1、随机误差项是一个期望值或平均值为0的随机变量;
2、对于解释变量的所有观测值,随机误差项有相同的方差;
3、随机误差项彼此不相关;
4、解释变量是确定性变量,不是随机变量,与随机误差项彼此之间相互独立;
5、解释变量之间不存在精确的(完全的)线性关系,即解释变量的样本观测值矩阵是满秩矩阵;
6、随机误差项服从正态分布。
(2)计量经济学高斯定理扩展阅读:
线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。
线性回归有很多实际用途。分为以下两大类:
1 如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
2 给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
❸ 计量经济学里,简单回归方程^y=^β1+^β2*x+μ的参数β2的无偏性怎么证明
这里很全http://www.pinggu.org/bbs/b5.html
快去看吧
O(∩_∩)O~
❹ 计量经济学产生BLUE估计量的基本假定是什么
最优线性复无偏性(best linear unbiasedness property,制BLUE)指一个估计量具有以下性质:
(1)线性,即这个估计量是随机变量。
(2)无偏性,即这个估计量的均值或者期望值E(a)等于真实值a。
(3)具有有效估计值,即这个估计量在所有这样的线性无偏估计量一类中有最小方差。
具有上述性质的估计量,被称为最优线性无偏估计量。
高斯-马尔科夫定理
在给定经典线性回归模型的假定下,最小二乘估计量,在无偏线性估计量一类中,有最小方差,即它们满足最优线性无偏性。
❺ 计量经济学中DW统计量是什么意思在N多模型检验中,DW统计量的结果反映什么问题,求简单明了的解释
Durbin Watson 统计量用来检验残差一阶自相关 只能检验一阶不能检验高阶自相关
DW = sum (eps_t - eps_{t-1})^ / sum (eps_t)^2 约= 2(1 - r)
r表示相邻残差之间的相关系数
如果r = 0 也就是说近似于2的DW值表示残差不存在相关性
如果r > 0 也就是说接近0的DW值表示正相关
如果r < 0 也就是说接近4的DW值表示负相关
一般DW统计量的表提供d_l和d_u
DW < d_l 正相关
d_l <DW < d_u 该检验不确定
d_u < DW < 4 - d_u 不存在自相关
4 - d_u < DW < 4 - d_l 该检验不确定
DW > 4 - d_l 负相关
(5)计量经济学高斯定理扩展阅读:
自相关性产生的原因:
线性回归模型中随机误差项存在序列相关的原因很多,但主要是经济变量自身特点、数据特点、变量选择及模型函数形式选择引起的。
1.经济变量惯性的作用引起随机误差项自相关
2.经济行为的滞后性引起随机误差项自相关
3.一些随机因素的干扰或影响引起随机误差项自相关
4.模型设定误差引起随机误差项自相关
5.观测数据处理引起随机误差项序列相关
自相关的后果:
线性相关模型的随机误差项存在自相关的情况下,用OLS(普通最小二乘法)进行参数估计,会造成以下几个方面的影响。
从高斯-马尔可夫定理的证明过程中可以看出,只有在同方差和非自相关性的条件下,OLS估计才具有最小方差性。当模型存在自相关性时,OLS估计仍然是无偏估计,但不再具有有效性。
这与存在异方差性时的情况一样,说明存在其他的参数估计方法,其估计误差小于OLS估计的误差;也就是说,对于存在自相关性的模型,应该改用其他方法估计模型中的参数。
1.自相关不影响OLS估计量的线性和无偏性,但使之失去有效性
2.自相关的系数估计量将有相当大的方差
3.自相关系数的T检验不显著
4.模型的预测功能失效
❻ 计量经济学中的自相关指什么啊
如果随机误差项的各期望值之间存在着相关关系,这时,称随机误差项之间存在自相关性(autocorrelation)或序列相关。
对于模型 y t= b0 +b1x1t+b2x2t+……bkxkt+ut
如果随机误差项的各期望值之间存在着相关关系,即
cov(ut,us)=E(utus) ≠ 0 (t,s=1,2,……k)
这时,称随机误差项之间存在自相关性(autocorrelation)或序列相关。
随机误差项的自相关性可以有多种形式,其中最常见的类型是随机误差项之间存在一阶自相关性或一阶自回归形式,即随机误差项只与它的前一期值相关:cov(ut,u t-1) =E(ut,u t-1) =/= 0,或者u t=f(u t-1),则称这种关系为一阶自相关。
一阶自相关性可以表示为
ut= p1 u i-1 + p2 u i-2 + p3 u i-3 + …… p p u t-p + v t
称之为p 阶自回归形式,或模型 存在 p 阶自相关
由于无法观察到误差项 u t,只能通过残差项 e t来判断 u t 的行为。如果 u t或 e t呈出下图(a) -(d) 形式,则表示u t 存在自相关,如果 ut 或et 呈现图中 (e) 形式,则 表示 u t不存在自相关
线性回归模型中的随机误差项的序列相关问题较为普遍,特别是在应用时间序列资料时,随机误差项的序列相关经常发生。
自相关性产生的原因:
线性回归模型中随机误差项存在序列相关的原因很多,但主要是经济变量自身特点、数据特点、变量选择及模型函数形式选择引起的。
1.经济变量惯性的作用引起随机误差项自相关
2.经济行为的滞后性引起随机误差项自相关
3.一些随机因素的干扰或影响引起随机误差项自相关
4.模型设定误差引起随机误差项自相关
5.观测数据处理引起随机误差项序列相关
自相关的后果:
线性相关模型的随机误差项存在自相关的情况下,用OLS(普通最小二乘法)进行参数估计,会造成以下几个方面的影响。
从高斯-马尔可夫定理的证明过程中可以看出,只有在同方差和非自相关性的条件下,OLS估计才具有最小方差性。当模型存在自相关性时,OLS估计仍然是无偏估计,但不再具有有效性。这与存在异方差性时的情况一样,说明存在其他的参数估计方法,其估计误差小于OLS估计的误差;也就是说,对于存在自相关性的模型,应该改用其他方法估计模型中的参数。
1.自相关不影响OLS估计量的线性和无偏性,但使之失去有效性
2.自相关的系数估计量将有相当大的方差
3.自相关系数的T检验不显著
4.模型的预测功能失效
如何判断数据存在自相关性
a. 用相关计量软件: 比如说E-VIEWS检查残差的分布。 如果残差分布具有明显和圆润的线性分布图像, 说明自相关性存在的可能性很高。反之, 无规则波动大的分布图像显示出相关性微弱。
b.Durbin-Watson Statistics(德宾—瓦特逊检验): 假设time series模型存在自相关性,我们假设误差项可以表述为 Ut=ρ*Ut-1+ε. 利用统计检测设立假设,如果ρ=o.则表明没有自相关性。Durbin-Watson统计量(后面建成DW统计量)可以成为判断正、负、零(无)相关性的工具。 DW统计量: d=∑(Ut-Ut-1)^2/∑ut^2≈2*(1-ρ).如果d=2则基本没有自相关关系,d靠近0存在正的相关关系,d靠近4则有负的相关关系。
c. Q-Statistics 以(box-pierce)- Eviews( 7th version第七版本)为例子: 很多统计计量软件软件提供Q test来检测,这里用Eviews为例子。 Q的统计量(test statistics)为 Q=n*∑ρ^2. 零假设null hypothesis H0=0和方法2的含义一样。如果零假设证明失败,则对立假设ρ≠0成立,意味着有自相关性。
如何减弱模型的自相关性
方法一(GLS or FGLS): 假设存在自相关性的模型,误差项之间的关系为:Ut=ρ*Ut-i+ε(ε为除了自相关性的误差项,i.i.d~(0,σ). t时期的模型为 yt=βxt+Ut, t-1时期则为 ρ*yt-1=ρ*βxt-1+ρ*Ut-t。用t时期的减去t-1时期的可得出yt-yt-1=β(xt-xt-1)+(Ut-Ut-1).已知 Ut-Ut-i=ε。经过整理后新的模型满足Gauss-Makov的假设和,White noise condition (同方差性或者等分散),没有自相关性。
方法二(HAC:Heteroscedasticity Autocorrelation consistent): 以Eviews为例子,在分析模型时选择HAC,在模型中逐渐添加time lag的数目,来校正DW统计量达到正常值减少自相关性。
❼ 计量经济学无偏性计量经济学中证明估计量无偏性为什么∑ki等于0
最优线性无偏性(best linear unbiasedness property,BLUE)指一个估计量具有以下性质:
(1)线性,即这个估计量是随机变量.
(2)无偏性,即这个估计量的均值或者期望值E(a)等于真实值a.
(3)具有有效估计值,即这个估计量在所有这样的线性无偏估计量一类中有最小方差.
具有上述性质的估计量,被称为最优线性无偏估计量.
高斯-马尔科夫定理
在给定经典线性回归模型的假定下,最小二乘估计量,在无偏线性估计量一类中,有最小方差,即它们满足最优线性无偏性.