当前位置:首页 » 文学经济 » 拉格朗日乘数法在经济学中的应用
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

拉格朗日乘数法在经济学中的应用

发布时间: 2021-03-20 05:18:34

1. 为什么微观经济学中拉格朗日函数都用减号,而高等数学

您好:

  1. 拉格朗日乘数λ在经济学中有其特殊含义(影子价格),比如说在微观经济学消费者行为专理论中属表示收入的边际效用。虽说没有特别规定,但一般写出来的拉格朗日函数要在求一阶偏导之后带λ项的符号为负,这样才便于解释其经济学含义。

  2. 以消费者行为的效用最大化求解为例,不同的教材正负号也是有区别的,比如高鸿业《西方经济学(第六版)》P78、尼科尔森《微观经济理论:基本原理与扩展(第11版)》P103构造的拉格朗日函数形式是L=U+λ(I-P1X1-P2X2);而平狄克《微观经济学(第八版)》P138构造的拉格朗日函数形式是Φ=U-λ(X·PX+Y·PY-I)。以上两种的好处就是λ的经济学含义更好理解——收入的边际效用。但是你写成L=U+λ(X·PX+Y·PY-I)或者L=U-λ(I-P1X1-P2X2)这两种形式,并不影响均衡条件的推导,只是λ的含义就变成收入边际效用的相反数了,经济学含义解释起来变麻烦了。

  3. 如果以上回答解决了您的疑问,请记得采纳;如果仍有不懂,欢迎继续提问,谢谢。

2. 关于微观经济学中的拉格朗日函数

先说用法吧,拉格朗日乘子法是用来求有限制的下最优解的,这里限制条件就是制约函数,求得就是在满足g(X)=b时f(X)的最值。

下面说具体内容,举个栗子比较容易讲:

假设f(X)是效用函数,g(X)=b是成本约束,为了简便X=x好了(只有一个约束),另外假设x的价格为p,后面会用到。

那等式L=f(x)+λ[b-g(x)]的意义就是如何在花光b那么多预算的时候让f(x)最大,答案显而易见就是当b=g(x)时所有预算花光,剁手剁得很欢快。这时λ就是收入的边际效用,也就是b每增加1各单位,效用就会增加λ那么多。证明如下:

对L求x和λ的一阶偏导,得到:

1.dL/dx=f'(x)+λg'(x)=0

2. dL/dλ=b-g(x)=0

第2个等式就是制约条件,意思就是预算被花光(因为完整的拉格朗日乘子法是允许不花光的)。

等式1变形得

3. λ=f'(x)/g'(x)

λ的定义就出来了,也就是当b每增加1个单位,g'(x)=1/p,就是花在x上的钱多了1,同时买了1/p那么多的x,这时λ=f'(x)/p,就是1单位收入带来的额外效用。

这时因为X是一元的所以最值不用另外求,就是当x=g^(-1)[b]时f(x)最大。

现在变成二元的,X=(x,y),g(.)依旧是成本,f(.)还是效用,但这时λ还是一样的意义,只不过一阶偏导变成了3个:

dL/dx=0

dL/dy=0

dL/dλ=0

三元一次方程组解出唯一解的话就是最优了。

当X上升为n元时,也就意味着要同时考虑n个条件,就像是同时用b购买有n种商品,要求效用的最优解。这时唯一的不同只是方程组的未知数变多了,解法还是一样的。

为势能。

在分析力学里,假设已知一个系统的拉格朗日函数,则可以将拉格朗日量直接代入拉格朗日方程,稍加运算,即可求得此系统的运动方程。

分析力学方面

在分析力学里,一个动力系统的拉格朗日量(英语:Lagrangian),又称为拉格朗日函数,是描述整个物理系统的动力状态的函数,对於一般经典物理系统,通常定义为动能减去势能。

力学方面

在力学系上只有保守力的作用,则力学系及其运动条件就完全可以用拉格朗日函数表示出来。这里说的运动条件是指系统所受的主动力和约束。因此,给定了拉氏函数的明显形式就等于给出了一个确定的力学系。拉氏函数是力学系的特性函数。

微观经济学的历史渊源可追溯到亚当·斯密的《国富论》,阿尔弗雷德·马歇尔的《经济学原理》。20世纪30年代以后,英国的罗宾逊和美国的张伯伦在马歇尔的均衡价格理论的基础上,提出了厂商均衡理论。标志着微观经济学体系的最终确立它的体系主要包括:均衡价格理论,消费经济学,生产力经济学,厂商均衡理论和福利经济学等。

微观经济学的发展,迄今为止大体上经历了四个阶段:

第一阶段:17世纪中期到19世纪中期,是早期微观经济学阶段,或者说是微观经济学的萌芽阶段。

第二阶段:19世纪晚期到20世纪初叶,是新古典经济学阶段,也是微观经济学的奠定阶段。

第三阶段:20世纪30年代到60年代,是微观经济学的完成阶段。

第四阶段:20世纪60年代至今,是微观经济学的进一步发展、扩充和演变阶段。

通观微观经济学的发展过程与全部理论,始终围绕着价格这一核心问题进行分析,所以微观经济学在很多场合又被称为“价格理论及其应用”。

3. 求论文 题目 浅谈数学规划模型在经济学中的应用 4000字左右 给参考资料的也行

简单说一下时代背景,如规划模型在经济学精确化条件下越来越重要,作为运筹学的重要分支,应用……再解释一下数学规划的定义,稍加阐释,网络上有,不过太简单,然后说一下数学规划的分类。最核心的环节是,对分类在经济学中应用的举例,注意详略得当,重点介绍线性规划,非线性规划,动态规划,以上三类书上都有例子。其余的不必展开论述。最后总结一下就好了 。附:类似论文一篇
浅析数学在经济学中的应用
摘要:半个多世纪以来经济学领域中数理形式的运用是—个重要的发展趋势,对经济理论和实践也有重要的影响。西方经济学知识的普及也已将数学知识渗透到了经济学的方方面面。将当今经济学名刊稍作翻阅便会发现,大量数学方法的运用甚有超越数学专业学生的趋势,经济学论文的质量要看其数学方法应用的程度,经济学硕士博士的录取要看其数学背景的深厚,数学几乎有一统经济学天下之势。经济学遇上数学将会演绎如何的理性之美?
关键词:经济学;数学;西方经济学
一、经济学的定义
资源的有限性和人类欲望的无穷性是经济学诞生的根基,这是一个常人皆知浅之又浅但又非常深刻的道理。经济学要解决的其实就是一个如何选择的问题,也就是说,经济学就是要解决选择以什么样的方式把有限的资源合理有效的配置进而达到满足人类无穷之欲望的目的。所以西方经济学里经济学被定义为研究稀缺资源配置的学科,它以理性的假设为逻辑起点,研究人类行为,这些基于现实基础研究的问题与现实经济生活中存在的问题紧密相连,研究的结论能有助于解释或理解现实经济问题。但是,经济关注人类行为本身的目的最终就是为了追求资源配置的效率(efficiency)。
经济学作为一门研究人类社会的事实的学科,有着它独特的味道。它可以联系到政治,社会等各种学科。对于经济学家,当他试图解释这个世界的时候,他就是经济学家,当他试图改变这个世界的时候,他就是政客。特殊的双重身份也说明经济学的多元性。甚至有人提出这样一种见解,认为经济学在本质上和史学没有什么差别,只是史学研究的大多是过去的事情,而经济学关注的历史长度就没那么长了,而且经济学更多的借用了数学和统计的工具来阐释问题。
二、数学在经济学中的应用
西方经济学者大量的把数学引入经济学,就是试图以一种精确的方式阚释世界,进而试图把现代西经济学发展成为一门精确的科学。以高鸿业主编的《西方经济学(微观部分)第四版)>为例,在说明边际效用时应用的极限和求导;在分析蛛网模型时应用的拉格朗日乘数法;在论证边际技术替代率时应用的多元函数微分法;在阐述寡头厂商之间的博弈策略时应用的博弈论与均衡的概念;以及无处不在的各种函数曲线的应用和函数表达式的推导。而这些只是经济学学习的入门课本上的一些例子。而在整个经济学领域里,边际分析、瓦尔拉斯一般均衡论、线性规划、投入产出分析、博弈论以及随机数学、模糊数学和非线性科学在经济中也有着广泛的应用。这些本来属于数学范畴的工具现在充满了经济学研究的方方面面。同时诺贝尔经济学奖的设立似乎也是一个强有力的明证。
但我们也不可否认,数学作为一门工具,在对经济学理论的解释中也发挥了重要的作用。下面来看几个经典的例子。
1.边际理论
公元17世纪,随着欧洲封建社会开始解体和资本主义工场手工业向机器大生产的过度,向数学提出了一系列必须从运动变化和发展的观点来研究事物的新问题。于是,从量上描述事物的运动和变化规律的数学部分——变量数学便应运而生。19世纪70年代初期,杰文斯、门格尔和瓦尔拉斯三位不同国籍的学者将他们的“欲望”概念或者“效用”概念和“微分”的基本概念结合起来,“边际效用”使出现了。经济学史上著名的“边际革命”也随着微积分思想向经济学渗透而爆发。在边际革命鼎盛时期之后,边际分析方法本身朝着更深更广的方向发展。而边际分析这一脱胎于微积分思想的有力工具,也在经济学的各个研究领域一宏观经济学、线性规划分析、经济计量学、福利经济学等等中得到了普遍的应用。
2.一般均衡理论
1 8世纪的欧洲,自由竞争的资本主义正处于上升的历史阶段。经济学家们注意到在一个社会里有众多的消费者和生产者,他们各自独立做出的决策不但没有引起混乱,反而在实际中产生了一种最优的经济状态。1776年,亚当·斯密就在他那本堪称“经济学的圣经”的‘<国民财富的性质和原因的研究》中提出,这是由于有一只“看不见的手”在起作用。而在一百年后,法国经济学家瓦尔拉斯把斯密的这一思想提炼成一般均衡问题,把用文字表述的思想借助19世纪已经发展成熟的线性代数理论转化成了数学问题。按照线性代数的观点,商品空间可以看作一个线性空间,每一种商品的需求或供给可以看作是一种约束,这种约束用状态变量所满足的方程来表示。而找到一组确定的值满足所有方程,就找到了均衡体系。瓦尔拉斯在1874年出版的代表作《纯粹经济学要义势中,从交换均衡入手,分析了由交换均衡、生产均衡、资本积累均衡和货币均衡四个方面构成的体系,阐明了在纯粹竞争条件下整个经济处于完全均衡状态时各种经济变量的均衡值的决定条件与相互关系。瓦尔拉斯借助于线性代数创造的这样一套全新的理论概念体系当时并没有被同时代的经济学家立刻适应和接受,反而对他诸多责难。但是,这一开拓性的工作却对后世产生了持久的深远影响。
三、数学方法在经济学中是工具
通过上面的几个例子,可以看出,数学的灵活运用对于一个经济理论的阐述的确起到了非同小可的作用。但我们必须看到,对于经济理论,数学方法是一种分析、论证和研究的工具,这种工具能否产生有用的成果,取决于应用数学的经济理论是否正确。数学方法可以为正确的理论服务,也可以为错误的理论效劳,方程式证明是对的,只是公式上的对,内容上却可能是错的,数学方程式大有用场,但数学本身是没有内容的。大概地对比精确的错可取,世界如此复杂,而统计学的陷阱多如牛毛,可取的结论也要先求大概地对为好,所以,经济学中数学的应用应该是一个附加条件慎之有慎而绝不是人人想用就可用的问题。
记得复旦大学陆铭教授在源于经济学和数学关系的一篇文章中说道,“在经济学里直觉非常重要。有了直觉以后,在做一个数学模型之前,应该在脑子里面有一个故事和逻辑,用数学把这个故事和逻辑写下来。数学的确可以帮助你得到一些结论,但我的经验告诉我,百分之七十甚至百分之八十的结论,可能你在写数学之前就已经知道了;确确实实有百分之二、三十的结论,如果你不写数学可能你就不知道,或者你知道的很模糊。为什么我这样说?回过头来想想看刚刚讲到的起点问题,如果你相信仅仅依靠数学可以帮你把经济学解释清楚,那我就要问,你的起点是哪儿来的?当你去写你的数学的假设时,当你去假设人的行为决策模式的时候,当你去假设模型中的市场结构的时候——是用垄断的市场结构,还是完全竞争的市场结构?在不在你的模型里放政府?——实际上你要做的是用数学来表达一个你对经济现实的认识。如果你说我对这个现实没有认识就直接写数学了,那非常危险的一个结果就是你的起点就错了,于是你的结论不可能是对的,哪怕你数学上非常花俏”。而且陆铭教授还强调了“数学之后”的问题,他说,“你们把数学推导完了,有没有想过在数学逻辑的背后,它的故事是什么,它的经济学含义是什么。这往往是同学们所忽略的。在学习和读论文的过程当中,如果你们忽略这一点,你们学到的就只是数学,而不是经济学。你们在写论文的时候,把数学写完了,写上两个字“证毕”,你的论文最多完成了百分之五十。你要知道,在数学层面上,只要动—叫叫、小的假设,就完全可能得到不同的结论,因此,脱离经济学机制而存在的数学结论是毫无意义的”。
所以思想应该是最重要的,数学是工具,目的是为了把问题看清楚,得出结论。经济学中的数学工具很重要——就仿佛和外国人交流用英语一样重要。但是,与和外国人用英语交流一样,更重要的你想要交流的思想。在经济学中,数学是全球经济学家都能听懂的语言,同样,语言很好并不必然意味着你的思想就很深刻。现在的经济学流派里,不大使用数学的新制度经济学就很有解释力。在经济史上的伟大经济学家,纳什作为一位数学系的博士生,因其博士论文在博奕论中的开拓性贡献而获得了一九九一年诺贝尔经济学奖。
纳什能够获奖,依靠的仅是数学吗?是通过数学所透析出的思想,一种具有开拓性的思想。还有科斯,他从来不用数学,仅凭二十余岁时发表的《企业的性质》及以后发表的《联邦传播委员会》而获得诺贝尔经济学奖,成为经济史上一位举足轻重的人物,科斯的产权理论和交易费用理论,证明了产权制度对经济的重要性,并在此基础上形成一个当前在经济学中十分重要的新制度经济学派。科斯没有凭借任何数学工具,凭借的完全就是一种思想,一种开拓于前人的思想。还有一些经济学家反对在经济学中运用数学工具,如获一九七四年诺贝尔经济学奖的缪尔达尔,他是代表弱势群体说话的经济学家,他对美国黑人和发展中国家人民的关注是经济学人文关怀的体现。同年获奖的经济学家哈耶克是自由主义大师,他对自由问题的论述,无疑是对人类的最大关怀。

4. 一道经济学高数应用题 多元函数极值 拉格朗日乘数法 题目见图 已经做了一部分 求接下去的过程 谢谢

5. 拉格朗日乘数的数学意义是什么经济学意义是什么与无差异曲线是否有关

可以从等值线来理解:比如f(x,y)在g(x,y)=0条件下的极值,便可以通过L=f(x,y)+tg(x,y),的无条件极值来求解,t为拉格朗日乘数。那么,可以这样理解这个极值,假设g的等值线是个圈(自己随便画个圈,表示g=0的等值线),f的等值线是一个波浪(自己随便画个正弦波浪表示f=c,c为其极值,而且这个波浪与那个圈有交点,有切点)如果在g条件下f有极值,那么两个等值线应该要有同时到达极致点,即是波浪的波峰或者波谷应该与圈的尖锐处相切,那么这个切点便是极值点,也就是c+t*0=c。试想,若不是相切,那么两个等值线交点处,f必不能取到极值,因为不满足极值条件(就是在(x0,y0)两边不满足均大于/小于(x0,y0))。

6. 拉格朗日函数法在经济分析中的应用,及拉格朗日乘数的经济含义。

主要用于约束条件下的最优化问题的分析。
拉格朗日系数的不同的问题中有不同的含义,效用函数中表示边际效用与价格的比。

7. 运筹学中的拉格朗日乘子的经济含义是什么。高人释疑。

拉格朗日乘子法
拉格朗日乘子(Lagrange multiplier)
基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数f(x1,x2,...)在g(x1,x2,...)=0的约束条件下的极值的方法。其主要思想是引入一个新的参数λ(即拉格朗日乘子),将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程,从而求出得到原函数极值的各个变量的解。

具体方法:
假设需要求极值的目标函数 (objective function) 为 f(x,y),限制条件为 φ(x,y)=M
设g(x,y)=M-φ(x,y)
定义一个新函数
F(x,y,λ)=f(x,y)+λg(x,y)
则用偏导数方法列出方程:
∂F/∂x=0 ∂F/∂y=0 ∂F/∂λ=0
求出x,y,λ的值,代入即可得到目标函数的极值
扩展为多个变量的式子为:
F(x1,x2,...λ)=f(x1,x2,...)+λg(x1,x2...)
则求极值点的方程为:
∂F/∂xi=0(xi即为x1、x2……等自变量)
∂F/∂λ=g(x1,x2...)=0
以上内容在《数学手册》当中有。另外,可以将这种把约束条件乘以λ(即不定乘子)后加到待求函数上的求极值方法推广到变分极值问题及其它极值问题当中,理论力学当中对非完整约束的处理方法就是利用变分法当中的拉格朗日乘子法。

拉格朗日乘子法的用途:
从经济学的角度来看,λ代表当约束条件变动时,目标函数极值的变化。因为∂F/∂M=λ,当M增加或减少一个单位值时,F会相应变化λ。
例如,假设目标函数代表一个工厂生产产品的数量,约束条件限制了生产中投入的原料和人力的总成本,我们求目标函数的极值,就是要求在成本一定的条件下,如何分配利用人力和原料,从而使得生产量达到最大。此时λ便代表,当成本条件改变时,工厂可达到的生产量最大值的变化率。

8. 拉格朗日中值定理的经济学意义

在用拉格朗日乘数法计算相关问题的时候,会遇到这样的情况,比如在计算效用最大化时的商品组合时,它就指单位货币的边际效用,具体问题看情况,有的商品没法这么算,比如棺材..

9. 拉格朗日乘子λ,如何被引入经济学中,为什么这样引入

正如高等数学里面拉格朗日乘子一样,作为工具引入到经济学中,多用于计算有约束条件时候的最优解,即最大值最小值,这样引入的目的只是计算的方便,工具

10. 拉格朗日方法中拉姆达的经济学意义是什么

在用拉格朗日乘数法计算相关问题的时候,会遇到这样的情况;比如在计算效用最大化时的商品组合时,它就指单位货币的边际效用。