当前位置:首页 » 素材参考 » 有关果胶酶的中文参考文献
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

有关果胶酶的中文参考文献

发布时间: 2021-03-31 18:08:02

① 焦磷酸酶的参考文献

^ Harold FM. Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev. 1966.December, 30 ^ Terkeltaub RA. Inorganic pyrophosphate generation and disposition in pathophysiology. Am. J. Physiol., Cell Physiol. 2001.July, 281 ^ Orimo H, Ohata M, Fujita T. Role of inorganic pyrophosphatase in the mechanism of action of parathyroid hormone and calcitonin. Endocrinology. 1971.September, 89 ^ Poole KE, Reeve J. Parathyroid hormone - a bone anabolic and catabolic agent. Curr Opin Pharmacol. 2005.December, 5 ^ Nelson, David L.; Cox, Michael M. Lehninger Principles of Biochemistry, 3rd ed.. New York: Worth Publishers. 2000: 937. ^ Ko KM, Lee W, Yu JR, Ahnn J. PYP-1, inorganic pyrophosphatase, is required for larval development and intestinal function in C. elegans. FEBS Lett. 2007.November, 581 (28): 5445–53. doi:10.1016/j.febslet.2007.10.047. ^ Usui Y, Uematsu T, Uchihashi T, et al.. Inorganic polyphosphate inces osteoblastic differentiation. J. Dent. Res. 2010.May, 89

② 关于纤维素酶和果胶酶配制的问题

你用的纤维素酶和果胶酶用的是哪里生产的?

③ 果胶酶能够分解果胶,在果汁生产中应用果胶酶可以提高出汁率和澄清度.请完成有关果胶酶和果汁生产的实验

(2)该实验研究的是果胶酶在果汁生产中的作用,实验变量为有无果胶酶,根据探究实验满足的原则:对照原则、单一变量原则,进行填表;
(3)比较观察相同时间内果汁的澄清度和滤出的果汁体积,如果是相同时间内1号烧杯滤出的果汁体积比2号烧杯滤出的果汁体积大,澄清度高,说明果胶酶对果胶的水解具有催化作用.
故答案为:
(2)②苹果泥果胶酶溶液
③在相同时间内滤出的果汁体积和果汁的澄清度?
(3)相同时间内1号烧杯滤出的果汁体积比2号烧杯滤出的果汁体积大、澄清度高?
(4)果胶酶2号烧杯

④ 葡萄糖氧化酶在食品中的应用的论文 包括参考文献

6 uuuuuuuuu独孤电影给客户发看见更好的风科技化工快活六国化工嘿嘿嘿嘿嘿嘿嘿嘿 是卡卡卡卡卡卡卡卡卡卡卡U盾

⑤ 糖基转移酶的参考文献

[1] Thoroson J S, Hoster T J, Jiang J, et al. Nature′s carbohydrate chemists: the enzymatic glycosylation of bioactive bacterial metabolites [J]. Curr Org Chem,2001,5(2):139
[2] Weymouth?Wilson A C. The role of carbohydrates in biologically active natural procts [J]. Nat Prod Rep,1997,14(2):99
[3] Losey H C, Peczuh M W, Chen Z, et al. Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides [J]. Biochemistry,2001,40(15):4745
[4] Cudic P, Kranz J K, Behenna D C, et al. Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: minimal structural requirements for intermolecular complexation and fibril formation [J]. Proc Natl Acad Sci,2002,99(11):7384
[5] Gellert M, O′Dea M H, Itoh T, et al. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase [J]. Proc Natl Acad Sci,1976,73(12):4474
[6] Sosio M, Stinchi S, Beltrametti F, et al. The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by nonomuraea species [J]. Chem Biol,2003,10(6):541
[7] Quiros L M, Aguirrezabalaga I, Olano C, et al. Two glycosyltransferases and a glycosidase are involved in oleandomycin modification ring its biosynthesis by Streptomyces antibioticus [J]. Mol Microbiol,1998,28(6):1177
[8] Gourmelen A, Blondelet?Rouault M H, Pernodet J L. Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens [J]. Antimicrob Agents Chemother,1998,42(10):2612
[9] 代焕琴. 安丝菌素生物合成的后修饰研究[D]. 中国科学院博士学位论文,2006:40
[10] Walsh C T, Losey H C, Freel C L. Antibiotic glycosyltransferases [J]. Biochem Soc Trans,2003,31(Pt3):487
[11] Lu C, Bai L, Shen Y. A novel amide N?glycoside of ansamitocins from Actinosynnema pretiosum [J]. J Antibiot,2004,57(5):348
[12] Hoffmeister D, Ichinose K, Bechthold A. Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity [J]. Chem Biol,2001,8(16):557
[13] Mulichak A M, Losey H C, Walsh C T, et al. Structure of the UDP?glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics [J]. Structure,2001,9(7):547
[14] Sanchez C, ButovichI A, Brana A F, et al. The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives [J]. Chem Biol,2002,9(4):519
[15] Otten S L, Liu X, Ferguson J, et al. Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyltransferase involved in daunorubicin biosynthesis [J]. J Bacteriol,1995,177(22):6688
[16] Zhao Y, Ahlert J, Xue Y, et al. Engineering a methy?mycin/pikromycin?calicheamicin hybrid: construction of two new macrolides carrying a designed sugar moiety [J]. J Am Chem Soc,1999,121(42):9881
[17] Hoffmeister D, Ichinose K, Domann S, et al. The NDP?sugar co?substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster [J]. Chem Biol,2000,7(11):821
[18] Walsh C, Freel C L, Losey H C. Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming [J]. J Med Chem,2003,46(16):3425
[19] Blanco G, Patallo E P, Brana A F, et al. Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus: the procer of the antitumor polyketide elloramycin [J]. Chem Biol,2001,8(3):253
[20] Dürr C, Hoffmeister D, Wohlert S E, et al. The glycosyltransferase UrdGT2 establishes both C? and O?glycosidic bonds [J]. Angewandte,2004,43(22):2962
[21] Freel C L, Anderson J W, Kahne D, et al. Initial characterization of novobiocic acid noviosyl transferase activity of NovM in biosynthesis of the antibiotic novobiocin [J]. Biochemistry,2002,42(14):4179
[22] Mendez C, Salas J A. Altering the glycosylation pattern of bioactive compounds [J]. Trends Biotechnol,2001,19(11):449
[23] He X, M Liu, H W. Formation of unusual sugars: mechanistic studies and biosynthetic applications [J]. Annu Rev Biochem,2002,71:701
[24] Oberthur M, Leimkuhler C, Kruger R G, et al. A systematic investigation of the synthetic utility of glycopeptide glycosyltransferases [J]. J Am Chem Soc,2005,127(30):10747
[25] Wohlert S E, Blanco G, Lombo F, et al. Novel hybrid tetracenomycins through combinatorial biosynthesis using a glycosyltransferase encoded by elm genes in cosmid 16F4 and which shows a broad sugar substrate specificity [J]. J Am Chem Soc,1998,120(41):10596
[26] Salas J A, Mendez C. Biosynthesis pathways for deoxysugars in antibiotic?procing actinomycetes: isolation, characterization and generation of novel glycosylated derivatives [J]. J Mol Microbiol Biotechnol,2005,9(2):77
[27] Sanchez C, Zhu L, Brana A F, et al. Combinatorial biosynthesis of antitumor indolocarbazole compounds [J]. Proc Natl Acad Sci,2005,102(2):461
[28] Salas A P, Zhu L, Sanchez C, et al. Deciphering the late steps in the biosynthesis of the anti?tumour indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase [J]. Mol Microbiol,2005,58(1):17
[29] Doumith M, Legrand R, Lang C, et al. Interspecies complementation in Saccharopolyspora erythraea: elucidation of the function of oleP1, oleG1 and oleG2 from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus and generation of new ery

⑥ 求一篇有关蛋白质功能性质的文献综述

果胶酶在果蔬饮料中的应用摘要:果胶酶普遍存在于细菌、真菌和植物中,是分解果胶类物质的多种酶的总称,在果蔬加工、饲料、纺织和造纸工业中应用非常广泛。果胶酶在果蔬饮料中的应用非常广泛,本文介绍了果胶的组成和结构,论述了果胶酶的分类、作用机制及酶活测定方法, 讨论了果胶酶在果蔬汁的出汁率、澄清、超滤等方面的应用,并对果胶酶在果蔬饮料加工中的应用等方面进行综述。

关键词:果胶酶 果蔬汁 出汁率 澄清 超滤 营养成分

随着社会经济的发展和人们生活水平的提高,果品成了人类健康不可缺少的营养物质。我国有着丰富的果品资源,然而因果品本身营养丰富,含水量高,很容易受微生物侵染和腐蚀,保存期较短。为了充分利用资源优势,提高我国农产品在国际市场上的竞争能力,必须大力发展果品加工业【1】。但是目前果品加工中存在着不少难题,例如果汁和果酒的澄清,果实的脱皮、加工过程中香气成分和营养物质的损耗等。解决这些难题仅仅靠改进加工工艺或增加设备投资是很难实现的。而目前有许多难题已经通过酶工程的应用得到了很好的解决。酶工程就是为了使酶催化各种物质转化的能力实现可控制操作,把游离的酶固定化,或者把经过培养发酵所得到的目的酶活力高峰时的整个微生物细胞进行固定化,再应用于生产实践中的过程【2】。近年来,酶工程在果品加工中的应用非常广泛,所用的酶种类越来越多,数量也越来越大,人类已开发出应用于果蔬汁中的多种酶类,如果胶酶、果胶酯酶、纤维素酶、鼠李糖苷酶、中性蛋白酶、半乳甘露聚糖酶、液化葡萄糖苷酶等,其中使用最多的是果胶酶。

1 果胶酶

国外对果胶酶的研究始于20世纪30年代至50年代已工业化生产。而国内的研究则始于1967 年,80年代末才开始工业化生产。随着我国水果种植和水果加工业的发展,对果胶酶的开发和应用也迅速发展。在果汁生产过程中,果胶酶可以快速彻底地脱除果胶,降低果汁黏度,利于果汁过滤,澄清滤液且澄清度稳定;减少化学澄清剂的用量,改善果汁质量;果胶酶利于压榨,可以有效地提高水果的出汁率,在沉降、过滤、离心分离过程中,改善果汁的过滤效率,利于沉淀分离,加速和增强果汁的澄清作用。经果胶酶处理的果汁稳定性好,可防止存放过程中产生浑浊。

1.1 果胶酶的定义

果胶酶(pectolytic enzyme or pectinase)是指能够分解果胶物质的多种酶的总称【1】。是果汁生产中最重要的酶制剂之一,已被广泛应用于果汁的提取和澄清、改善果汁的通量以及植物组织的浸渍和提取。

1.2 果胶酶的分类及作用机制

果胶酶可以分为3类:原果胶酶、解聚酶和果胶酯酶(PE)。各种酶作用方式如图1所示。原果胶酶将不溶性的原果胶水解为水溶性果胶,根据其作用方式不同又可分为外切酶和内切酶。一般用苯酚-硫酸法测定溶液中由原果胶释放出果胶物质的量来确定原果胶酶的活力。聚半乳糖醛酸酶(PG)分为外切酶和内切酶。PG内切酶广泛存在于真菌、细菌和很多酵母中,高等植物中也发现有内切酶的存在。内切酶作用于聚半乳糖醛酸时,随机水解其中的半乳糖醛酸单位,可使其溶液的粘度下降,但还原力增加不大。聚半乳糖醛酸酶的活力可以通过测定反应中还原能力的增加或者底物溶液粘度的降低来确定。聚半乳糖醛酸裂解酶(PGL)和聚甲基半乳糖醛酸裂解酶(PMGL)分别通过反式消去作用切断果胶酸分子和果胶分子的α-1,4糖苷键,生成β-4,5不饱和半乳糖醛酸。这两种裂解酶都分为外切酶和内切酶两种一些植物软腐病菌、食品腐败菌以及霉菌均能产生外切聚半乳糖醛酸酶。裂解酶的活力可以通过测定其释放的不饱和糖醛酸数量来计算。

2 果胶酶在果蔬饮料生产中的应用

果胶酶作为果蔬汁生产中最重要的酶制剂之一,已被广泛应用于果蔬汁的提取和澄清、改善果蔬汁的可过滤性以及植物组织的浸渍和提取。目前,大部分原果汁、浓缩果汁的生产过程中,都在使用果胶酶,但由于各种水果中果胶含量差别较大, 而且果胶质的成分也有差异,因此,应根据水果的不同品种、不同加工目的来确定合适组成的果胶酶。

2.1 果汁的提取

目前果汁的提取方法主要是加压榨出和过滤,果汁加工时首先将植物细胞壁破坏。大多数植物细胞壁主要由纤维素、半纤维素和果胶物质等组成,细胞壁的结构较紧密,单纯依靠机械或化学方法难以将其充分破碎。另外,果胶随成熟度的增加,酯化程度较高,也是影响出汁率的主要因素之一。用果胶酶处理可以破坏果实细胞的网状结构,提高果实的破碎程度,有效降低其黏度,改善压榨性能,提高出汁率和可溶性固形物含量,从而就能在压榨时达到提高出汁效率并缩短压榨时间的目的,同时把大分子的果胶物质降解后,有利于后续的澄清、过滤和浓缩工序[19]。例如在苹果汁生产中,苹果要先经机械压榨,然后离心获得果汁,但果汁中仍然含有较多的不溶性果胶而呈浑浊状。直接将果胶酶加到苹果汁中,处理后经加热杀菌、灭酶、过滤得到澄清的果汁。

2.2 果胶酶能提高果蔬汁的出汁率

果胶酶是应用于果蔬饮料生产中最主要的酶类,它能较大幅度地提高果蔬饮料的出汁率,改善其过滤速度和保证产品贮存稳定性等。若添加果胶酶制剂,则可降低葡萄汁液的黏稠度,提高出汁率,减轻强度,缩短加工时间,获得色泽清亮、汁液清澈的葡萄汁[6]。例如,在苹果浓缩汁生产中,为了避免液化技术的缺点,很多厂商采用两阶段液化技术,或者称为果渣液化技术:首先在果浆中添加果胶酶,浸渍后压榨,或者不加果胶酶直接压榨; 接着将压榨后的果渣加水,之后加入果胶酶和纤维素酶进行酶解,然后压榨,从而大大提高苹果的出汁率。

2.3 果胶酶能使果蔬饮料澄清

果胶酶作用于果蔬汁时,除降低粘度外,还可产生絮凝作用,使果蔬汁澄清。澄清机理的实质包括果胶的酶促水解和非酶的静电絮凝两部分。果汁中有很多物质如纤维素、蛋白质、淀粉、果胶物质等影响澄清,且果胶物质是造成果汁混浊的主要因素。在樱桃汁的加工过程中,添加果胶酶使果胶水解,从而使樱桃汁黏度降低,过滤阻力减小,过滤速度加快;同时,由于樱桃汁中的悬浮果粒失去高分子果胶的保护,很容易发生沉降而使上层汁液清亮,在以后的澄清过程中,明胶澄清剂的加入量便可大大减少,甚至免加澄清剂。果胶酶还可以用于苹果汁、甘蔗汁[5]、蟠桃汁、桃杏李果汁等的澄清。添加果胶酶时,应使酶与果浆混合均匀,根据原料品种控制酶制剂的用量,并控制作用的温度和时间。若果胶酶与明胶结合使用,效果更佳。有时采用复合酶法澄清,如在澄清枣汁时,使用果胶酶和α-淀粉酶[4]。

2.4 果胶酶能提高超滤时的膜通量

利用超滤技术生产清汁及浓缩清汁在果蔬汁加工业中越来越流行。超滤比传统的过滤速度快、效果好,但它的主要缺点是由于果蔬汁中大量糖的存在,在超滤过程中会使超滤系统产生次生覆膜,降低了超滤通量。加入分解多糖物质的商品果胶酶,可减少次生覆膜的产生,提高超滤通量,增加了产量。因此,脱胶对于获得较高的膜通量和浓缩比非常关键。除了可以提高膜通量,果胶酶还可用于超滤膜的清洗。与化学方法相比,利用果胶酶清洗超滤膜能100%地进行生物降解,而且可以在最佳pH、温度下作用,从而可以缩短清洗时间、增加超滤膜的通透量和使用寿命、增加产量、节省能源[12]。因此,将超滤技术与酶技术联用对发挥超滤作用至关重要。

2.5 果胶酶能改善果蔬饮料的营养成分

利用果胶酶生产果蔬汁不仅提高了出汁率,而且保留了果蔬汁中的营养成分。首先果蔬汁的可溶性固形物含量明显提高,而这些可溶性固形物由可溶性蛋白质和多糖类物质等营养成分组成,果蔬汁中的胡萝卜素的保存率也明显提高。Chang Tungsun 等对果胶酶处理果汁的研究表明,酶处理后的果汁的葡萄糖、山梨糖和果糖含量显著提高,蔗糖含量略有下降,总糖含量上升[13,14]。甜玉米、胡萝卜的试验有相似的结果[15]。此外,由于果胶的脱酯化和半乳糖醛酸的大量生成, 造成果汁的可滴定酸度上升,pH下降[13,14]。芳香物质含量也有明显提高,经果胶酶处理后的葡萄汁,各种酯类、萜类、醇类和挥发性酚类含量提高,葡萄汁的风味更佳[16]。由于细胞壁的崩溃,类胡萝卜素、花色苷等大量色素溶出,大大提高了果蔬汁的外观品质。K、Na、Ca、Zn 等矿物质元素含量也有较大提高[17]。

2.6 果胶酶能改善浓缩果汁品质

果汁浓缩后,不仅流动性差,而且稳定性也差,因此果汁的浓缩也需先澄清和脱果胶,以避免浓缩时产生胶凝。果汁经酶处理去除果胶后再浓缩,所得浓缩汁有较好的流动性,并且重新稀释后仍是稳定的。尤其适用于柑橘类浓缩汁的生产。目前,果胶酶在果品加工中的应用还有果品软化、脱苦和去除异味等,不同活性比例的果胶酶制剂已在许多国家成为标准加工作业。随着酶技术本身的发展,果胶酶在食品工业尤其在果品加工业中的应用前景会更加广阔。

2.7 果胶酶还可用于果实脱皮——脱除及净化果皮

含有纤维素和半纤维素的粗果胶酶制剂能够作用于果实皮层,使之细胞分离、结构破坏而脱落。如柑桔囊衣、莲子肉皮和大蒜膜层经粗果胶酶处理后,可以很快地脱落。此外,果胶酶对杏仁也有一定的脱皮作用[18]。目前,不同活性比例的果胶酶制剂已是降解果蔬细胞壁,改善压榨性能、降低粘度、增加出汁率,和提高营养成分不可省略的部分。在许多国家,添加果胶酶已是制造澄清或者浓缩的草莓汁、葡萄汁、苹果汁及梨汁的标准加工作业。随着酶技术本身的发展,果胶酶在果蔬汁中的应用前景会更加光明。

2.8 其他方面的应用

在葡萄酒生产中应用果胶酶,可以提高葡萄汁和葡萄酒的得率,增强葡萄酒的澄清效果,大大提高葡萄酒的过滤速度。果胶酶还可以提高超滤时的膜通量, 还可用于超滤膜的清洗。利用果胶酶清洗超滤膜能100%地进行生物降解,而且可以在最佳pH 值、温度下作用。缩短清洗时间、增加超滤膜的通透量和使用寿命、增加产量、节省能源。果胶酶是应用于果蔬饮料生产中主要的酶类,它可以较大幅度地提高果蔬品种的出汁率,改善其过滤速度和保证产品贮存稳定性。随着果汁和果酒行业的快速发展,果胶酶的需求和应用前景将极为广泛。

3 结论

目前,在果蔬汁加工业中已广泛采用果胶酶降解果蔬细胞壁以改善压榨性能、降低粘度、增加出汁率和提高营养成分。在食品加工比,酶的一个重要用途是使原科更易于处理,增加产品的得率,使用果胶酶、纤维素酶和半纤维素酶可促进细胞分离,细胞壁变软,这特别适于水果和蔬菜[9]。果胶酶作用于果胶质中D-半乳糖醛酸残基之间的糖苷键,使高分子的聚半乳糖醛酸降为小分子物质。因此,它在食品工业有重要的应用价值。果胶酶是应用于果蔬汁生产中且主要的酶类,它可以较大幅度地提高果蔬品种的出汁率,改善其过滤速度和保证产品贮存稳定性。随着软饮料行业的快速发展,果胶酶的需求和应用前景将极为广泛。目前我国对果胶酶的工业化应用还处于相对滞后的状态,为提高果胶酶的使用率,简化产品提纯工艺并达到连续化生产的目的,将果胶酶固定于廉价载体上已成为国际上研究的一项重要课题[8]。

参考文献

[1]乔勇进, 王太明. 浅论我国果品贮藏加工业的发展策略[J] . 山东林业科技, 2005 ( 1) : 64- 66.

[2]谭兴和, 甘霖. 酶在果品加工中的应用与其固定化[J] .保鲜与加工, 2003 ( 6) : 10- 12.

[3] 许毅, 周岩民, 王恬, 王桂玲. 果胶酶在饲料中的应用[ J ]. 2004, 1: 12 14.

[4] 刘松涛.几种澄清方法在果蔬汁饮料生产中的应用[J].广西轻工业, 1999,(2): 37- 38.

[5] 陈健旋.应用果胶酶澄清甘蔗汁[J].闽江学院学报,2005,(10): 51- 53.

[6] 薛洁, 贾士儒.果胶酶在欧李果汁加工中的应用[J].食品科学, 2007,(1): 120- 122.

[7] 许英一,徐雅琴.果胶酶在果蔬汁生产中的应用[J].饮料工业, 2005,(4): 15- 17.

[8] 张应玖, 金成日, 王红梅等. 果胶酶的固定化研究[ J ].生物技术. 1996, 6 (2) : 26 29.

[9] 杨军, 赵学慧. 果胶酶对果蔬制汁作用的研究[ J ]. 食品科技. 1998 (3) : 27 29.

[10] YAMASA KI M , et al . Pectic enzymes in t he clarification ofapple juice. Part 2 : The mechanism of clarification [J ] 1 Agric BiolChem , 1967 (31) : 552~5601

[11] PILNIK W1 In : Use of enzymes in food technology [M] . En2zymes in t he Beverage Inst ry , 19821

[12] 陈历俊, 白云玲, 郭亚斌, 等. 酶在果汁超滤生产中的应用[J ] . 食品工业科技, 1995 (4) : 34~371

[13] CHANG T S , et al . Plum juice quality affected by enzymet reatment and fining [J ] . J of Food Science , 1994 , 59 (5) : 1065~10691

[14] CHANG T S , et al . Commercial pectinase and t he yield and

quality of Stanley plum juice [J ] . J of Food Science , 1995 (19) : 89~1011

[15] ANDERSON D M W. Synergistic effect s of cellulase , pectinaseand bemicelluase on cell wall hydrolysis [ J ] . Food Hydrocolloids ,1991 , 5 (1/ 2) : 223~2241

[16] CONXITA LAO , et al . Pectic enzyme t reatment effect s onquality of cohite grape must s and wines [J ] . J of Food Sci , 1997 , 62 (6) : 1142~11441

[17] 王成荣, 等. 果胶酶制剂在澄清苹果汁加工中的应用研究[J ] . 食品与发酵工业, 1990 (5) : 29~331

[18] 王永霞, 赵兴杰, 吴陆敏. 生物技术在饮料工业中的应用[J ] . 邯郸农业高等专科学校学报, 2002 , 19 (2) : 37~391

[19]凌健斌, 郑建仙. 酶在果酒生产中的应用与研究[J] . 四川食品与发酵, 2000 ( 1, 2) : 22- 24.

⑦ 关于果汁中的果胶和果胶酶实验 这个实验中的95%的乙醇有什么用啊

使细胞可以充分溶解,有利于实验的进行!

⑧ 将果胶酶溶胶加入到苹果匀浆中后进行间歇搅拌的目的是若要鉴别苹果汁中的果胶

考点: 果胶酶的活性测定 专题: 分析: 本题是探究果胶酶的无关变量处理的基本操作,根据该实验的目的及对无关变量的控制即可解答. 在观察“不同浓度果胶酶对澄清苹果汁得率的影响”实验中,由于要观察加入的果胶酶的影响,故将苹果汁加热到100℃,其主要目的是通过高温使苹果汁匀浆中的原有的酶变性失活,以排除对实验的干扰.故选:C. 点评: 本题的知识点是无关变量的控制,主要考查学生设计实验的能力和对实验变量的控制能力,试题难度中等.