当前位置:首页 » 素材参考 » 微发泡参考文献
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

微发泡参考文献

发布时间: 2021-03-29 15:01:01

❶ 有关水刀切割的参考文献

南京佳顿自动化设备专业水刀加工 水切割外协加工

数控水刀是将超高压水射流发生器与二维数控加工平台组合而成的一种平面切割机床。它将水流的压力提升到足够高(200MPa以上),使水流具有极大的动能,可以穿透化纤、木材、皮革、橡胶等,在高速水流中混合一定比例的磨料,则可以穿透几乎所有坚硬材料如陶瓷、石材、玻璃、金属、合金等。在二维数控加工平台的引导下,在材料的任意位置开始加工或结束加工,按设定的轨迹以适当的速度移动,实现任意图形的平面切割加工。
*数控水刀有什么特性和优点?
与传统的“热”切割工艺相比,超高压水射流切割机床以水流为切割介质,是一种“冷”切割工艺。它具有如下功能与优点:
1.切割时无热变形,避免了材料的物理、化学变化;
2.广泛适应于各种材料的切割加工,有“万能切割机”之誉;
3.切口光滑平整无毛刺,一般无须再加工;
4.由数控系统操纵,切割精度高;
5.切割缝小于1.2mm,便于套料切割,节约材料;
6.加工过程不会产生污染环境的废物。
数控水刀对那些用其它方法难以切割的材料如芳纶(Kevler)、钛合金及各种复合材料是非常理想或唯一的加工手段。
*数控水刀能达到怎样的精度?
严格来讲,数控水刀虽然比火焰、等离子切割机床可以更精确的切割,但还不是精密加工机床,应该不能标注精度。在切割10mm以下的板料时,把切割速度和补偿控制得恰到好处,误差可以做到+-0.1mm。
*数控水刀能切割的最大厚度是多少?
由于水射流的靶距是不确定的或者说是变化的,数控水刀的最大切割厚度并不好明确界定。胆大者,敢称400、500mm,保守者称100mm以内,都是合理的。现有的数控水刀一般流量在2~3升,工作压力在200~380MPa,射流经过空气阻力,能量衰减极快,到400、500mm时,基本就随风飘散了,就没有打击力。
就一般应用而言,切割金属板材厚度建议不超过100mm,发泡材料如海绵厚度建议不超过300mm。
*高压泵(高压发生器)的工作原理是什么?

系统原理图如下:

油路部分工作原理

电机驱动油泵,将液压油从油箱中抽出,经单向阀传送到油压管路中。此时油路分成三路,一路接蓄能器和压力表,压力表显示油压,蓄能器可起平稳油压的作用,第二路接换向阀,另一路接溢流阀。当未按下开水射流按钮时,从油泵送出来的液压油经溢流阀、水冷式冷却器和回油过滤器直接流回油箱,则少量的液压油通过换向阀进入增压器油腔,不足以推动油活塞产生换向或换向缓慢;而当按下开水射流按钮后,溢流阀闭合,液压油经换向阀进入增压器油腔,推动油活塞运动,同时油活塞另一边的液压油被推出油缸,经水冷式冷却器、回油过滤器流回油箱。当油活塞被推至油缸末端,碰撞换向顶杆,顶杆触发换向阀产生换向信号,从而使液压油路从油缸的另一端进入,油活塞回程。至油缸未端又触发换向顶杆,油活塞又回程。如此,连续不断地触发换向器进行油路换向,从而形成增压器的往复运动。
水路部分工作原理
自来水经过滤器过滤之后,由水泵进行加压,进入增压器两端的高压缸内。当油活塞往复运动时,一端高压缸通过进水单向阀进水,另一端高压缸的水被推出、经过出水单向阀进入高压管路。如此动作,在两端的高压缸中交替进行,形成源源不断的高压水流。由于存在增压器换向周期,输出的水流的压力形成周期性波动。因此高压水流需经高压蓄能器进行稳压,通过高压管输送到喷射头。在喷射头上安装有孔径为0.25~0.33mm的宝石喷嘴。高压水流在宝石喷嘴的约束下形成具有极大动能的高速“水箭”,可以击穿纤维、皮革、橡胶等软质材料。在“水箭”中混合一定比例的磨料,则形成磨料水射流,可以穿透任何坚硬材料。
增压器原理
当液压油作用在活塞上时,连接在活塞的高压柱塞杆将高压缸内的水推出。根据能量守恒定律,假设无摩擦损耗,两者的作功相等。此时,油压乘以活塞横截面积等于水压乘以柱塞杆横截面积,即水压与油压的比值等于油活塞横截面积与高压柱塞杆横截面积的比值。油活塞横截面积与高压柱塞杆横截面积之比称为“增压比”,由于其比值固定,所以通过控制油压就可调节水压。
*影响数控水刀切割效率的因素有哪些?
影响数控水刀切割效率的因素是多方面的而且是相互影响的。主要有:刀头结构及质量、水射流的压力高低及压力波动幅度、水喷嘴的完好程度、磨料质地规格选配是否合适及质量好坏、喷砂管完好程度,等等。
常用材料的切割效率,可参考下表:

材料

厚度(mm)

切割速度(mm/分钟)

切割压力(MPa)

钢板/不锈钢板

2
5
10
20
40
80
100

850~1100
400~550
180~240
60~90
25~40
10~15
3~5

300

铝板

6
20
50

700~900
180~250
50~70

300

铜板

5
10

600~750
250~350

300

钛板

2
5

300~400
120~150

300

玻璃

6
20
53

1200~1500
240~350
50~70

300

大理石板

10
20
30

400~900
150~400
50~100

300

花岗岩板

10
20
30

200~600
100~250
25~60

300

瓷砖

10

1200~1500

300

注:切割速度愈低,切口质量愈好。

*如何选到一台好的水刀?
目前国内水刀还没有一个通行的标准,各生产企业在标明各项指标参数上不能保证其内涵的一致性,使得用户在选购时比对各项指标参数时就会失去意义。
水刀是加工工具,好工具的标准就是:一要效率高,二要耐用即故障率低,三要费用低。
第一步:看切割效率高低。
切割效率包括切口质量和切割速度。水刀切割的一个特点是:切割速度越低,切口质量越高。
拿同一块材料到几个水刀厂家去试切割,然后再比较:相同切口质量下,谁的切割速度快;相同切割速度下,谁的切口质量高。切割的最低要求,是切断材料。切断速度是一个很可靠的比较指标。
第二步:比较耐用性。
水刀的故障主要出在高压系统。各水刀厂家产品性能高低由此泾渭分明。
高压缸、蓄能器、高压柱塞、单向阀体堵头、高压密封、单向阀等部件品质好坏,直接决定了水刀的故障率高低。这些部件的使用寿命越长越好。
第三步:比较维修、维护费用高低。
目前水刀没有一个通行的标准,零部件互换性很低。而且,水刀的高压部件又是有限使用寿命。因此,购买水刀时不仅要看整机价格,更要看配件价格。不仅要看单价,更要结合使用寿命仔细算综合使用成本。
简而言之,用户可以不必理会压力、流量、精度这些指标,只管亲眼所见和亲耳所闻如何在合同里得到保证。
*数控水刀使用成本多少?

1.设备折旧
整机平均购买价格以25万元计算。正常使用寿命为5年。每年实际工作日数为300天,每天平均使用(实际工作)时间为5小时,5年累计工作时间为7500小时。重要部件平均更换周期为2000小时,费用约为1.6万元。
设备购置成本及重置成本为(250000+16000x7500/2000=)310000元。
设备折旧每小时约为(310000/7500=)41.5元。
2.耗材成本

项目名称

使用寿命/消耗量

单价(元)

每小时成本(元)

A:易损件

高压动密封组

>500hrs

248元/套

0.50

单向阀

>500hrs

340元/套

0.68

油密封组

>1000hrs

180元/套

0.18

静密封组

>500hrs

76元/套

0.15

B:耗材

喷砂管

>150hrs

750

5.00

水喷嘴

>40hrs

20

0.50



<150kg/hr

3.5(以南京价格为基准)

0.55



<25kw/hr

0.8(以南京价格为基准)

20.00

磨料

30kg/hr

0.75(以南京价格为基准)

22.50

合计:约50元/小时*数控水刀有哪些常见故障以及如何排除?

1.增压器常见故障及排除方法

故障现象

检查、排除顺序及方法

高压、低压皆无但换向正常

a.检查自来水供水是否断水或水压过低;
b.检查水泵是否正常;
c.检查宝石喷嘴是否正常(水束明显发散);
d.检查挡钣后窥孔有无漏油、漏水(有漏水,表明高压腔动密封损坏;有漏油,表明油缸档板上动密封损坏。);
e.检查进水单向阀是否失效(进水管回水明显);
f.检查出水单向阀是否失效(单向阀处手感明显发热);
g.检查高压柱塞杆是否断裂(拆除进、出水管和出水单向阀,往高压缸内插入一根细钢丝,探到柱塞杆,开启电机油泵,观察钢丝是否顶出。不顶出或移动距离小,则表明柱塞杆已断裂)。

高压、低压皆无且换向时间过长或不换向

a.如不换向且油压很高,用手推一下换向阀的任一端电磁阀阀杆;
b.调整霍尔开关位置(将霍尔开关向油缸方向轻微移动)
c.检查换向霍尔开关是否正常;(参照下节相关内容)
d.检查换向阀电气部分是否正常;(参照下节相关内容)
e.确认是否调整过油泵流量(太小);
f.确认是否调整过溢流阀流量(太大);
g.检查换向阀阀芯是否堵塞或磨损;(参照下节相关内容)
h.检查油缸中活塞密封是否损坏。(参照下节相关内容)

压力正常或偏高但射流切割无力

a.检查高压管路是否堵塞;
b.检查喷砂管是否堵塞;
c.检查宝石喷嘴是否堵塞或损坏;
d.更换喷砂管,进行对比。

高、低压力波动过大

a.检查高压腔一体塞头上出水单向阀连接处有无泄漏(先确认是否接头与单向阀之间的密封面损坏,一般应修理接头的平面;再确认单向阀锥垫与塞头上配合的锥孔之间的密封面损坏,一般应更换锥垫。简便办法:整体更换新的出水单向阀。);
b.检查挡钣后窥孔有无漏水(漏水一侧高压缸动密封须更换);
c.检查挡钣后窥孔有无漏油(漏油一侧油缸挡板上的Y型油密封圈须更换);
d.确定压力下降时换向指示灯亮着的一侧(灯亮时间也相对短些),称为失压端;
e.检查失压端的出水单向阀是否失效(手摸单向阀附近会烫手,则需更换单向阀);
f.检查另一侧的进水单向阀是否失效(用力捏紧塞头进水口处的水管,在换向指示灯明、灭时都有水流脉动,则修、换单向阀)。

换向时间过短或两个霍尔开关指示灯同时亮

a.调整开关位置(将霍尔开关向高压缸方向轻微移动);
b.检查换向触杆是否卡紧(断开总电源,拆开换向顶杆的外铜套,将换向组件一一拿出,换向触杆在最深处,用磁铁能将其吸出。如不能吸出,表明换向触杆被卡紧。恢复换向组件时,特别注意磁柱的方向不要错,应将能触发霍尔开关的一端对外。)。

2.油压系统故障及排除
排查顺序为:油泵电机组—换向霍尔开关—换向阀—溢流阀—油缸密封
(一)检查油泵电机组
启动电机油泵,察看柱塞泵的吸油管是否进油
不进油ó1.三相供电相位变了(电机反转);2.油泵电机组异常
解决方法:1.将断路器任意两根进线(或出线)互换位置;2.修理或更换油泵电机。
进油ó油泵电机组正常,进行第二步检查。
(二)检查换向霍尔开关
打开电源,不要启动电机油泵,取出换向霍尔开关,将霍尔开关依次接近磁铁(注意极性,用磁铁的两端分别试),霍尔开关指示灯是否对应地亮/灭。同时,观察与霍尔开关相连的继电器是否有动作。
不能对应地亮/灭ó霍尔开关损坏
解决方法:更换新的霍尔开关
继电器无动作ó继电器损坏
解决方法:更换新的继电器
能对应地亮/灭、继电器动作ó霍尔开关没有损坏/继电器正常,进行下一步检查
(三)检查换向阀
打开电源,不要启动电机油泵,将霍尔开关依次接近磁铁,同时用手去感应换向阀的电磁阀阀杆是否移动。可重复多次,以确定其稳定性。
阀杆不移动ó换向阀工作异常
解决方法:1.清洗阀芯及阀腔;2.更换新阀。
阀杆移动ó换向阀正常,进行下一步检查
(四)检查溢流阀
打开电源,不要启动电机油泵,按下高压启动按钮,用手去感应溢流阀的电磁阀阀杆是否移动。可重复多次,以确定其稳定性。
阀杆不移动ó溢流阀工作异常
解决方案:1.清洗阀芯及阀腔;2.更换新阀。
阀杆移动ó溢流阀正常,进行下一步检查
(五)检查油缸密封
开启油泵电机(注意:不要开启高压),将两只换向霍尔开关拿在手上,分别接近磁铁,同时注意听油缸内的动静,并注意察看两块挡板后窥孔有无漏油现象。
两个方向都没有动作或其中一个方向没有动作ó活塞上密封失效
解决方法:拆开油缸,取出活塞,更换新的密封件。同时,更换有漏油现象的一端挡板内的油封。(注意:拆油活塞时,须特别要保护好与之联结的高压柱塞杆,防止表面划伤或折断。)
两个方向都有动作ó活塞密封正常,检查其它原因。
3.数控操作系统故障及排除

故障现象

原因/检查步骤

解决方法

无法进入控制软件

该程序的数据被破坏

重新安装该程序;确认系统无病毒

其它程序也无法运行

重新安装WINDOWS系统

仿真运行时提示有错误

检查G代码文件的错误

正确分行;改正错误代码

DXF图形文件有错

修正交叉点;去掉重合线段

X、Y轴某一轴无动作

驱动器故障

1.点动该轴按键,同时观察该轴驱动器指示灯是否工作;
2.将该轴接插件与另一正常轴接插件调换后观察该轴是否有动作。

电机故障

接插件未接好

检查接插件是否牢靠

丢步

电机缺相

检查线路

驱动器故障

更换驱动器

插卡不正确或IO卡故障

重新插卡或换卡

电机相关参数被修改

恢复被修改的参数

操作指令无反应

急停按钮未复位

复位急停按钮

电气线路上松脱、断点、元件损坏

重新接牢;更换已损坏元件

病毒影响

杀毒;重新安装程序液压系统、增压器常见故障及排除方法

故障现象

检查、排除顺序及方法

高压、低压皆无但换向正常

1. 检查自来水供水是否断水或水压过低
2. 检查水泵是否正常
3. 检查宝石喷嘴是否正常(水束明显发散)
4. 检查高压柜内有无漏油、漏水
5. 检查出水单向阀是否发热(两边温度明显不同)

换向不正常(换向时间过长或不换向)

1. 检查换向传感器是否正常
2. 检查换向电磁阀是否正常
3. 检查是否调整过油泵流量导致流量太低
4. 检查是否调整过溢流阀流量导致流量太大
5. 检查换向阀阀芯是否堵塞或磨损
6. 检查油缸中活塞密封是否损坏

压力正常但切割无力

1. 检查高压管路是否堵塞
2. 检查喷砂管是否堵塞
3. 检查宝石喷嘴是否堵塞或损坏
4. 更换喷砂管,进行对比

数控系统常见故障及排除方法

故障现象

检查、排除顺序及方法

X、Y轴某一轴无动作

1. 检查接插件是否牢靠
2. 检查驱动器是否故障(驱动器上显示Err)

操作指令无反应

1. 检查急停按钮是否复位
2. 检查电缆接线是否松动

数控水刀增压器常见的故障及排除方法
1.水刀增压器常见故障及排除方法
A、高压、低压皆无但换向正常 排除方法 :a.检查自来水供水是否断水或水压过低; b.检查水泵是否正常; c.检查宝石喷嘴是否正常(水束明显发散); d.检查挡钣后窥孔有无漏油、漏水(有漏水,表明高压腔动密封损坏;有漏油,表明油缸档板上动密封损坏。); e.检查进水单向阀是否失效(进水管回水明显); f.检查出水单向阀是否失效(单向阀处手感明显发热); g.检查高压柱塞杆是否断裂(拆除进、出水管和出水单向阀,往高压缸内插入一根细钢丝,探到柱塞杆,开启电机油泵,观察钢丝是否顶出。不顶出或移动距离小,则表明柱塞杆已断裂)。
B、高压、低压皆无且换向时间过长或不换向 a.如不换向且油压很高,用手推一下换向阀的任一端电磁阀阀杆; b.调整霍尔开关位置(将霍尔开关向油缸方向轻微移动) c.检查换向霍尔开关是否正常;(参照下节相关内容) d.检查换向阀电气部分是否正常;(参照下节相关内容) e.确认是否调整过油泵流量(太小); f.确认是否调整过溢流阀流量(太大); g.检查换向阀阀芯是否堵塞或磨损;(参照下节相关内容) h.检查油缸中活塞密封是否损坏。(参照下节相关内容)

加砂水刀切割经验技巧

而有些则只能通过经验获得。希望您在阅读这些技巧后能更加了解切割流程。有些技巧很显而易见。>

1 若切割厚度低于0.100英寸的资料,使用中(50马力)或大(60至80马力)切割头将不起作用。使用小参数组合(25马力)如必要,请考虑使用多个切割头以提高生产。

2 防止通过高于0.020气隙切割。气隙中,水易涌出且仅切割下层。进行多层切割时,将板压在一起切割。

3 较小的砂料颗粒(120粒度或更小)切割速度较慢,但表面更为平滑(与80或50粒度相比)

4 生产力是每英寸成本,不是每小时成本。每小时花多长时间运行加砂水刀并不重要。重要的给定的时间内生产出多少工件。有些用户想要通过降低砂料流速降低运行成本,这是错误的即使砂料是加砂水刀运行成本的三分之二,也必需快速生产工件以消耗间接费用(劳动力、设施、租赁费用)使用所有可用的马力和最高砂料流速尽快切割。

5 如果需要定期为复合材料、玻璃和石材穿孔,确保系统能够使用控制器降低或增高水压。同时要检查真空辅助装置或其它技术,以提高为这些脆性资料或层压材料穿孔成功的机率。

6 与一般的多流程控制器相比,经过特殊设计用于流程的控制系统通常更有效、更易于使用。

7 大多数机器不采用资料装卸自动化设备,例如航天飞机。只有当资料处置构成部件生产本钱的一个重要部分时,才会考虑使用自动化设备。90%加砂水刀设备是用手或借助于桥式起重机、旋臂起重机或叉车进行装卸。约有50%水刀设备使用资料装卸自动化设备。水刀通常在极高的速度下切割厚而轻的资料。切割整个薄板所用的时间相当低,部件生产本钱的装卸局部非常高,足以证明增加的资金投入很正确。

8 通常使用自来水注入水刀系统。将自来水通过泵的进水过滤器注入增压器之前,90%水刀和加砂水刀用户只需要将水软化。反渗透(RO和脱离子器可将水净化到离子匮乏地步。这种侵蚀性水通过吸取周围材料(例如泵和高压管线中的金属)离子来消除离子匮乏状态。反渗透(RO和脱离子器会大大延长出水孔的寿命,然而同时会损坏增压器和水管。喷嘴相当廉价。高压汽缸、止回阀和端盖的损坏费用会远远超出出水孔寿命延长的费用。

9 水下切割会降低加砂水刀切割顶部表面结霜或起雾可能性。水下切割还会大大减少射流的噪声和工作场所的混乱。唯一的缺点是切割过程中操作人员不能清楚地看到射流。如果操作人员反对水下切割,考虑使用电子性能监控装置。这些监控装置能够检测到与最佳切割性能的偏差,并能在部件损坏之前关闭系统。

10 如果在不同的工作中计划使用不同的砂料粒度,考虑增加较小(100磅)或较大(500至2000磅)散装输送。如果您没有定期散装输送漏斗来筛选颗粒,生产过程中可能会停机或造成损坏。

11 具有冲溢标记表明切割厚度小于0.3英寸的资料是有效的虽然冲溢标志会让您进行二次操作才能磨掉,但是这种用法能更快执行材料处理-仅仅需要用切割部件不间断地替换切割薄板。资料越硬,冲溢标记会越小。有关详细建议,请咨询您的制造商。

❷ 中国房地产泡沫研究的目录

第一章 导论
第一节 基本概念
第二节 中国房地产泡沫的争论
第二章 房地产泡沫的理论基础
第一节 房地产的资本特性导致泡沫:四象限模型
第二节 理性泡沫理论
第三节 非理性泡沫理论
第四节 房地产供求理论:泡沫的出发点
第五节 房地产泡沫的非均衡基础
第三章 房地产泡沫的系统推动力
第一节 房地产泡沫的利益相关者系统
第二节 房地产利益相关者的目的与行为
第三节 主要的利益相关者行为对房地产泡沫的打压与拉抬
第四节 房地产业系统内部的利益相关者之间的合谋分析
第五节 房地产泡沫的微观基础:心理行为与不确定性
本章小结
第四章 中国房地产泡沫:生成与传导机制
第一节 房地产泡沫产生的经济基础
第二节 房地产泡沫形成的体制性原因
第三节 房地产泡沫形成的信息传导机制
第四节 房地产泡沫生成的冲击传导机制
第五节 总结:中国房地产泡沫的生成原因
第五章 中国房地产泡沫的传导模式及其影响
第一节 房地产泡沫的传导要素与传导过程
第二节 中国房地产泡沫的传导途径
第三节 房地产泡沫的传导对中国经济的影响
第四节 房地产泡沫对社会的影响
第六章 中国房地产泡沫的预警
第一节 预警理论概述
第二节 房地产泡沫的判断与测度
第七章 中国房地产泡沫的治理策略
第一节 国外及我国港台地区房地产泡沫治理的经验与教训
第二节 中国房地产泡沫的防范策略
第三节 中国房地产泡沫进发时的治理策略
结束语
附录
附录一:1997-2006年有关房地产政策一览
附录二:历史上著名的房地产泡沫
主要参考文献

❸ 挤塑聚苯乙烯泡沫塑料的目录

第1章 绪论
1.1 聚合物发泡材料简述
1.1.1 聚合物发泡材料的分类方法
1.1.2 聚合物发泡材料的发展历程
1.1.3 聚合物发泡材料的应用领域
1.2 建筑保温材料简述
1.2.1 无机保温材料
1.2.2 有机保温材料
1.3 XPS泡沫塑料的主要性能
1.3.1 热导率
1.3.2 长期热阻
1.3.3 压缩强度
1.3.4 阻燃性能
1.3.5 防潮及防腐蚀性能
1.4 XPS泡沫塑料的应用领域
1.4.1 建筑保温领域
1.4.2 冷链物流领域
1.4.3 土工领域
1.5 XPS泡沫行业的总体情况
1.5.1 行业现状
1.5.2 技术现状
1.6 XPS行业的发展趋势
参考文献
第2章 XPS泡沫塑料的成型加工
2.1 发泡成型原理
2.1.1 气泡成核
2.1.2 气泡增长
2.1.3 气泡塌陷和破裂
2.1.4 固化成型
2.2 原材料
2.2.1 聚苯乙烯树脂
2.2.2 发泡剂
2.2.3 成核剂
2.2.4 阻燃剂
2.2.5 其他助剂
2.3 成型工艺
2.3.1 原材料和产品配方的选择
2.3.2 原材料的喂料
2.3.3 挤出过程
2.3.4 发泡过程
2.3.5 冷却定型和牵引
2.3.6 定长切断
2.3.7 影响发泡质量的主要工艺参数
2.3.8 XPS生产过程工艺控制
2.3.9 常见问题及解决方案
2.4 成型设备
2.4.1 挤出生产线
2.4.2 二次加工设备
2.4.3 自动化辅机系统
2.4.4 边角料回收装置
2.4.5 中央吸尘装置和边角料的回收处理装置
2.5 真空发泡
2.6 典型的XPS挤出发泡机组技术参数
2.6.1 物料及产品参数
2.6.2 工厂要求
2.6.3 工艺流程图
2.6.4 产品明细单
2.6.5 主要部件技术说明
2.6.6 备件单
参考文献
第3章 HCFCs发泡剂的替代
3.1 HCFCs替代原则
3.2 HCFCs替代品
3.2.1 惰性气体发泡剂
3.2.2 烃类发泡剂
3.2.3 氢氟烃类发泡剂
3.2.4 组合发泡剂
3.3 HCFCs替代技术
3.3.1 欧盟地区
3.3.2 日本
3.3.3 北美地区
3.3.4 中国XPS泡沫行业HCFCs替代技术现状
3.3.5 中国XPS泡沫行业HCFCs替代的特点
3.3.6 中国XPS泡沫行业HCFCs替代的难点
3.3.7 替代产品的性能及市场
3.3.8 几种较成熟的替代技术
参考文献
第4章 XPS泡沫塑料的阻燃技术
4.1 高分子材料的燃烧特征及阻燃机理
4.1.1 物质的燃烧过程
4.1.2 高分子材料的燃烧特征
4.1.3 高分子材料的阻燃机理
4.1.4 高分子材料用阻燃剂
4.2 XPS的燃烧和阻燃机理
4.2.1 XPS的燃烧过程
4.2.2 XPS用溴系阻燃剂的阻燃机理
4.2.3 溴系阻燃剂与三氧化二锑的协同阻燃机理
4.3 XPS的阻燃技术
4.3.1 XPS阻燃技术现状
4.3.2 六溴环十二烷的特性
4.3.3 六溴环十二烷在XPS中的应用
4.3.4 六溴环十二烷的替代技术
4.3.5 阻燃XPS泡沫塑料的成型加工
4.4 XPS泡沫塑料阻燃性能的评估
4.4.1 泡沫塑料阻燃性能的表征
4.4.2 建筑材料及制品阻燃性能的表征
4.4.3 外墙保温材料的临时防火规定
参考文献
第5章 XPS泡沫塑料的检测方法
5.1 微观结构
5.1.1 开孔和闭孔结构
5.1.2 泡孔的微观结构
5.1.3 泡孔结构的表征
5.2 物理性能
5.2.1 表观密度和真密度
5.2.2 规格和尺寸偏差
5.2.3 尺寸稳定性
5.2.4 吸水率
5.2.5 水蒸气透过系数
5.2.6 冻融循环
5.3 力学性能
5.3.1 压缩性能
5.3.2 弯曲性能
5.3.3 剪切强度
5.3.4 压缩蠕变
5.3.5 拉伸强度
5.4 热性能
5.4.1 热导率和热阻
5.4.2 长期热阻
5.5 燃烧性能
5.5.1 极限氧指数
5.5.2 燃烧性能分级
5.5.3 锥形量热分析
5.5.4 烟密度
参考文献
第6章 XPS泡沫塑料国内外行业标准
6.1 中国XPS泡沫行业标准现状
6.1.1 中国XPS泡沫行业相关标准
6.1.2 绝热用XPS标准
6.1.3 公路工程用XPS标准
6.1.4 CRTSⅡ型板式无砟轨道高强度挤塑板暂行技术条件
6.1.5 企业主要关注的性能指标
6.1.6 企业对现行国家标准的意见
6.2 XPS行业ISO标准
6.2.1 分类方法
6.2.2 规格尺寸和尺寸偏差
6.2.3 产品的性能要求
6.2.4 产品的试验方法
6.3 德国XPS行业标准状况
6.3.1 德国XPS泡沫行业相关标准
6.3.2 建筑绝热用XPS标准
6.3.3 土木工程和轻质填充物用XPS标准
6.4 美国XPS行业标准状况
6.4.1 美国XPS泡沫行业相关标准
6.4.2 绝热用XPS标准
6.4.3 土木工程用XPS标准
6.5 日本XPS行业标准状况
6.5.1 日本XPS泡沫行业相关标准
6.5.2 绝热用XPS标准
6.6 其他国家XPS行业标准状况分析
参考文献

❹ 急需求一篇啤酒发酵的文献翻译,谢谢了,

Beer Co.Ltd. of Guizhou Maotai Group, Zunyi, Guizhou 563003, China

英文摘要: Beer foam is an important index for beer quality. It has the properties of foamability, stability and cup-hanging. It is proced by multiple foamy substances and carbon dioxide gas in beer. The foamy substances cover foam protein, polypeptide, isohumulone, melanoid, metal ions, amylase, alcohol and barm etc. The substances influencing beer foam cover fatty acid, higher ethanols and alkali ?琢-amino acid. Beer foam could be improved through proper control on raw materials selection, saccharifying techniques, fermenting techniques, beer filtration measures, the transportation of wort and beer, and sanitary conditions etc. (Tran. by YUE Yang)
英文关键词: beer; beer foam; influencing factors; proction control

啤酒泡沫是啤酒质量的一项重要指标,有人称泡沫是啤酒之花,也有人将洁白细腻的啤酒泡沫誉为啤酒的“皇冠”,它是优质啤酒的重要外观标志之一。
1 啤酒泡沫的性能
按照欧洲啤酒酿造协会的规定,泡沫可分为起泡性、稳定性、泡沫质量3个方面,而在我国通常还增加一项挂杯性。
1.1 起泡性
是指啤酒按照一定的方法、标准倒入杯中时形成泡沫的高度(多少)。
1.2 泡沫稳定性(又叫泡持性)
即泡沫形成后消失的时间。按照GB4927-2001的规定,优质浅色啤酒的泡持性应在200 s以上。
1.3 泡沫质量
指泡沫的色泽和细腻程度。啤酒泡沫越细腻,啤酒口感越好,即醇厚性越强。
1.4 挂杯性
指泡沫附着于酒杯壁上的能力。
以上4项指标是相互联系的,只有起泡性和泡沫质量好的啤酒,其泡持性和挂杯性才可能好。泡沫质量差的啤酒其泡持性和挂杯性不可能好。
世界上绝大多数国家和地区(包括中国)的啤酒消费者都喜欢丰富的、稳定的、奶油状的泡沫,只有少数地方的消费者认为泡沫对啤酒而言无关紧要,甚至有消费者喜欢没有泡沫的啤酒。
2 啤酒泡沫的成因
2.1 啤酒起泡成分物质
由于啤酒是一种含有高、中分子蛋白质分解产物、?茁-葡聚糖、酒花树脂、类黑素、糖蛋白、戊聚糖、低分子多酚、重金属离子等的胶体溶液,使其具有比水小的表面张力,从而具备了起泡条件。
2.2 二氧化碳气体
啤酒中含有一定量的处于过饱和状的CO2气体,使其具备了起泡能量。当装啤酒的容器开启后,处于过饱和状的CO2在压力差的作用下,形成均匀的气泡晶核,从酒体中释放出来,微小的CO2气泡逐渐膨胀增大而上浮,最终形成泡盖。
3 啤酒中形成泡沫的物质
3.1 泡沫蛋白和多肽
目前,国际上啤酒界对泡沫蛋白和多肽的认识仍处于混沌状态,观点不一而足,甚至有一些完全相反的学术观点。但就生产控制而言,如下几点是形成的基本共识。
3.1.1 啤酒中的蛋白质
这些蛋白质业界称为泡沫蛋白或起泡蛋白,其造就了优质的泡沫稳定性,这些决定泡沫稳定性的蛋白质或多肽的基本特性具有较好的疏水性。疏水性越大,生成的泡沫越稳定。
3.1.2 多肽的疏水性
多肽的疏水性和其分子量大小没有直接关系。就泡沫稳定性而言,疏水性较其分子量更重要。
3.1.3 蛋白成分比例
按照隆丁区分法,A区分和B区分蛋白质高能增加泡沫蛋白的比例,可作为生产控制指标。
3.2 异葎草酮
实验证明,?琢-酸、异?琢-酸和希鲁酮都能提高啤酒泡沫的生成能力。无酒花啤酒的起泡性很差。
3.3 类黑素
类黑素使泡沫稳定是通过类黑素上的负电荷和肽类物质的正电荷发生离子反应完成的。但麦汁煮沸时间越长,由类黑素产生泡沫稳定性的有效性越低。
3.4 金属离子
在加酒花啤酒中,泡沫稳定性和黏附性受到金属离子的刺激后而增强。实验表明,啤酒中的镍、钴、铁等离子可增强啤酒表面黏度,从而提高泡持值。与多肽一样,金属离子可能与高浓度的异?琢-酸结合生成不容性物质,使得泡沫挂于杯壁上。但金属离子添加过量容易导致啤酒胶体和风味稳定性变差,甚至有毒负作用。
3.5 多糖(如?茁-葡聚糖、戊聚糖)
多糖是高黏度性物质,易使啤酒形成较大的极限薄膜,使气泡不易消失,从而提高泡沫稳定性。
3.6 酒精
没有酒精的啤酒泡沫极不稳定,如无醇啤酒的泡沫和泡持性都较差,而加入乙醇后起泡性和泡沫稳定性都可以提高。但啤酒中乙醇含量过高或过低又对泡沫有害。一般认为1 %vol~3 %vol的乙醇对挂杯有利。
加酒花的麦汁泡沫并不挂杯,但加入乙醇后就能做到这点,这说明乙醇增加了泡沫的黏度。酒精能降低啤酒中CO2的溶解度,这可能是由于降低了啤酒的表面张力或乙醇和多肽之间发生了某种作用而引起的。
3.7 二氧化碳
CO2促使啤酒形成细微的气泡,使泡沫呈奶油状。应该说CO2是啤酒产生泡沫的载体。啤酒中CO2含量越丰富,啤酒的起泡性就越好。
3.8 酵母物质
酵母细胞壁的外层物质有着很强的泡沫稳定性,并因菌种及其生长不同而异。细胞壁的主要成分是多糖,并含有极少量的蛋白质。
4 啤酒中影响啤酒泡沫的物质
4.1 脂肪酸
啤酒中含有多种饱和与不饱和脂肪酸,这些脂肪酸对啤酒泡沫影响很大,特别是不饱和脂肪酸的影响更大。实验还证明,脂肪酸对泡沫挂杯性的影响比对泡沫持久性的影响更大。
4.2 高级醇
高级醇是啤酒发酵的代谢产物,也是一种消泡剂。如果含量过高,会影响啤酒泡沫。但只要工艺合理,啤酒中的高级醇含量一般不会影响到啤酒的泡沫。
4.3 碱性?琢-氨基酸
某些碱性的?琢-氨基酸,如精氨酸、赖氨酸、组氨酸等对啤酒泡沫有负面影响,尤以精氨酸为最。这些氨基酸对异?琢-酸和蛋白质之间形成的离子键有抑制作用,从而对泡沫产生影响。
5 改善啤酒泡沫的生产控制
5.1 原料的选择与控制
5.1.1 大麦蛋白质含量
由于我国大多数啤酒企业从成本的角度考虑,现在的辅料比都较大,因此应选用蛋白质含量适当高一些且皮薄的大麦。建议蛋白质含量在10.5 %~11.5 %较好。
5.1.2 工艺控制措施
为了降低制麦过程中蛋白质,特别是泡沫活性多肽的过多消耗,同时适当生成有利泡沫的类黑素,可在制麦过程中采取如下工艺措施。
5.1.2.1 浸麦、降温、发芽
采用长断水浸麦工艺和降温发芽工艺,提高大麦发芽水分。采用15 ℃→13 ℃的低温、降温发芽工艺,发芽3 d后提高回风使用量,用较高的CO2含量抑制根芽和叶芽的生长。
5.1.2.2 干燥、凋萎
干燥、凋萎阶段采用低温、大风量工艺,以使麦芽快速脱水,避免麦芽蛋白质过度分解。干燥温度控制在80~83 ℃,时间2~3 h,既能形成适量类黑素,同时又防止高分子氮过多凝固,泡沫蛋白过多消耗。
5.1.2.3 麦芽除根
麦芽除根要干净。因为麦芽的根芽含有脂肪酸和能导致啤酒混浊的高分子可溶性氮。
5.1.3 辅料选择
选择适当、适量的辅料。如用大米作辅料,建议比例不超过42 %,如果用量超过45 %,应适当加一点小麦或小麦芽、焦香麦芽(类黑素含量高),以改善啤酒泡沫性能。因为小麦或小麦芽含糖蛋白比较高,对改善啤酒泡沫的性能效果比较显著。
5.2 糖化工艺控制
5.2.1 投料温度、醪液pH值
较高的投料温度(50~55 ℃)和较低的醪液pH值(5.4~5.6)有利于内肽酶的作用,可产生较多的高、中分子蛋白分解产物,使啤酒的起泡性和泡持性提高。
5.2.2 高温、短时糖化法
如果麦芽质量较好,采用高短(高温、短时间)糖化法,如60 ℃投料,68~73 ℃休止30~40 min,越过蛋白质休止阶段,可增加麦汁中高、中分子蛋白以及糖蛋白的含量,也能获得较好的泡沫性能。
5.2.3 洗糟水pH值
洗糟水pH值控制在6.5~6.8,防止多酚、色素物质过多的溶出。洗糟水温不高于78 ℃,洗糟不要过度(残糖控制在0.8 %~1.5 %),麦汁要清亮,防止过多脂肪酸进入麦汁而影响啤酒泡持性。
5.2.4 ?茁-葡聚糖酶的使用
?茁-葡聚糖酶不可随便添加,应根据麦芽的脆度、黏度和粗细粉差作小试验而定,因为?茁-葡聚糖酶加量过高,会导致麦汁黏度过低,而使啤酒的起泡性和泡持性变差。
5.2.5 底部进醪和密闭糖化
底部进醪和密闭糖化可避免醪液氧化,能使麦汁中保留更多的酚类物质,有利于泡持性。
5.2.6 煮沸时间
控制好满锅浓度,严格控制煮沸时间。长时间煮沸会使麦汁中起泡蛋白过度凝聚析出,对泡沫不利。
5.2.7 酒花
严格控制酒花加量、质量和品种。酒花加量过大对泡沫不利;越新鲜、?茁-酸含量越高的酒花对泡沫越有利。
5.2.8 冷、热凝固物含量
定性麦汁中,热凝固物应<25 mg/L,冷凝固物控制在50~100 mg/L。若冷、热凝固物含量过高,它们所含的脂肪、脂肪酸有损啤酒泡沫性能。
5.3 发酵工艺及生产控制
5.3.1 通风充氧量
冷麦汁通风充氧时会产生泡沫,导致异?琢-酸及起泡蛋白的含量下降,因此通风要适量。
5.3.2 酵母菌种
应选择分泌二糖酶和酵母蛋白酶A少的酵母菌种。
5.3.3 酵母使用
高浓发酵的酵母应在高浓和低浓麦汁中交替使用,这对恢复酵母的生理调节能力有好处。同时,尽早回收酵母,尽可能低温贮存酵母,尽可能在短时间内使用酵母,能提高酵母活力,对啤酒泡沫有利。
5.3.4 低温接种、低温主酵
采用低温接种(6~7 ℃),低温主酵(9~10 ℃),高温还原双乙酰(12~13 ℃)的发酵工艺,可减少各种醇、醛、酸、酯、酮的产生,降低对泡沫的损害。
5.3.5 降温
均匀、缓慢的降温,低温、稳压下充足的贮藏时间,让CO2 充分饱和,可提高啤酒起泡性和泡沫稳定性。若CO2含量不足,将直接影响啤酒的起泡性和泡持性。
5.4 啤酒过滤控制措施
啤酒过滤时,添加泡沫稳定剂(如蛋白水解物)或四氢异构酒花浸膏,都能改善啤酒泡沫性能。添加蛋白吸附剂要谨慎、适量,以防泡沫蛋白析出过多,影响啤酒泡沫。
5.5 麦汁、啤酒转移输送要求
在从糖化到啤酒灌装的各个生产环节,要保证麦汁、发酵液以及啤酒的输送稳定,压力波动小,尽量减少泡沫的形成,以减少起泡物质的损失。因为啤酒中的起泡物质具有不可逆性,在各个生产环节起泡越多,啤酒中的起泡物质损失就越大。
5.6 清洁卫生要求
生产过程中必须杜绝各种油脂类物质进入半成品、成品中;清洗发酵罐、清酒罐、管道、酒机和灌装容器时要用清水或无菌水冲洗彻底,避免清洗剂残留。因为脂类物质和一些清洗剂都具有消泡性,影响啤酒的泡持性。
事实上,啤酒泡沫是一个很复杂的问题,目前仍是全球酿酒师和科研人员的一个重要攻关课题。本文只是介绍了一些到目前为止经生产实践证实了的改善啤酒泡沫的工艺和生产控制措施,而我们对啤酒泡沫内在特性的认识,尤其是对泡沫活性多肽的分布和作用机理的认识还十分有限,甚至还存在不少分歧,这些都有待广大酿酒和科研工作者继续进行深入的研究。
参考文献:
[1] (德)Ludwig Narziss 著,孙明波译.啤酒厂麦芽汁制备工艺技术[M].北京:中国轻工业出版社,1991.
[2] 慕尼黑理工大学Weihenstephan学院 Werner Back 教授,啤酒泡沫稳定性以及存在的问题.
[3] 雒亚静.啤酒泡沫的影响因素及控制措施[J].啤酒科技,2005,(1):38-39. 请采纳 求高悬赏 谢谢

❺ 煤层气氮气泡沫压裂技术的研究与试验

孙晗森1贺承祖2

(1.中联煤层气有限责任公司 北京 100011;2.成都理工大学 成都 610059)

作者简介:孙晗森,1973年生,男,浙江义乌入;1998年毕业于成都理工大学石油系,获工学硕士;中联煤层气有限责任公司,高级工程师,从事油气藏数值模拟和增产改造技术研究;地址:北京安外大街甲88号,邮编:100011;E-mail:hssun [email protected]

攻关项目:国家科技部“十五”科技攻关项目部分成果。

摘要 氮气泡沫压裂工艺技术特别适用于低压、低渗和水敏性地层(煤层)的压裂改造。研究表明,泡沫压裂液中作为稳泡剂的高分子聚合物和某些作为起泡剂的表面活性剂均可能损害煤储层,影响压裂效果。本文提出一种新的粘弹性表面活性剂泡沫压裂液。通过室内实验研究及现场应用试验,优选出的氮气泡沫压裂液具有性能好,施工后无需破胶即可排液,对煤层损害小的优点;现场应用后可达到明显的增产效果。

关键词 煤储层 氮气泡沫 压裂液 表面活性剂 现场应用

Study and Experiment on Nitrogen Foam Stimulation Technology for CBM

Sun Hansen,He Chenzhu

(1.China United Coalbed Methane Corp.,Ltd,Beijing 100011;2.Cheng University of Technology,cheng 610059)

Abstract:Nitrogen foam stimulation technology particularly applies to stimulation operations of coal seams with low pressure,low permeability and water sensitivity.Some researches indicate that macromolecular polymers as steady agent of bubble and certain surface-active agents as generating agent of bubble in foam fracture liquid may damage coal reservoir and proce negative effects on stimulation.A new type of nitrogen foam fracture liquid called visco-elastic surface-active agent was introced in this paper.The optimized nitrogen foal fracture liquid through indoor study and field application test not only has good physical performance and virtues of low damage to coal seams,but also can proce liquid without glue-broken agent after stimulation operations.The application of this type of nitrogen foam fracture liquid in the practical operations of CBM fields showed very obvious stimulation results.

Keywords:coal reservoir;nitrogen foam;fracture liquid;surface-active agent;site application

前言

煤层具有致密、低压、低渗的特点,必须经过压裂之后才能获得有工业价值的产量[1]。压裂液的种类很多,其中以泡沫压裂液因其含液量小,易排,对储层损害小,认为较适合煤层[2,3]。研究表明,泡沫压裂液中作为稳泡剂的高分子聚合物和某些作为起泡剂的表面活性剂均可能损害煤储层,影响压裂效果。

氮气泡沫压裂工艺是20世纪70年代以来发展起来的一项压裂工艺技术。主要适用范围是低压、低渗和强水敏性储集层。在低渗油层压裂改造和煤层气压裂增产中,氮气泡沫压裂工艺在美国应用已经相当普遍,在黑勇士盆地的煤层气开采井中,大多数的施工井都采用氮气泡沫压裂工艺;而国内由于受到压裂设备、技术工艺和成本等方面因素的影响,制约了氮气泡沫压裂工艺的发展。

泡沫压裂液从工艺和添加剂的更新换代上看,主要发展经历了三代。入们将仅用表面活性剂水溶液生的泡沫压裂液叫做第一代泡沫压裂液;将加有聚合物和交联聚合物的泡沫压裂液分别叫做第二和第三代泡沫压裂液[3]。第二和第三代泡沫压裂液虽然比第一代泡沫压裂液的稳定性高,但由于引入聚合物,存在低温井破胶不完全以及破胶后对地层的损害问题[5],部分丧失了泡沫压裂液低损害性的优点。

本文提出一种新的粘弹性表面活性剂泡沫压裂液。通过室内试验及研究,优选出的氮气泡沫压裂液具有性能好,施工后无需破胶即可排液,对煤层损害小的优点。

1 实验条件和方法

1.1 试剂及材料

粘弹性表面活性剂:研制产品。氯化钾、过硫酸铵、碳酸盐型阴离子表面活性剂、季铵盐型阳离子表面活性剂、非离子表面活性剂,均为化学试剂。羟丙基瓜胶:工业品。煤样:潘河先导性试验区无烟煤。

1.2 实验方法[5,6]

1.2.1 泡沫基液的性质

用毛管粘度计测量粘度,用滴重法测量表面张力,用改进的Bickerman法测量在煤样上的接触角。

1.2.2 泡沫的结构和性质

用高速搅拌法(≥100转/min,2min)起泡。在显微镜下观察泡沫的结构,测量泡沫的体积,计算泡沫质量(气体体积/泡沫体积)。测量液体析出一半的时间,确定泡沫的半衰期。用六速粘度计测量泡沫的流变性。测量砂粒在泡沫中的沉降速度,评价携砂能力。在失水仪测量泡沫的滤失速度。

2 泡沫压裂液性能

2.1 氮气泡沫压裂液的结构

研究者[3]根据等球体最紧密堆积时,球体所占空间体积为0.74 这一几何原理,认为泡沫质量≤0.74时泡沫中的气泡为球形,泡沫质量>0.74 时被挤压为五角十二面体。我们的观察表明,该粘弹性表面活性剂水溶液所形成的泡沫,在质量高达0.80 时气泡仍为球形,显微相片如图1所示。仅在泡沫质量大于0.90 时才被挤压为五角十二面体形。由该图可以看出:泡沫中气泡大小分布比较均匀,大多在0.04~0.10mm之间,由于小气泡可填充在大气泡之间的空隙中,所以这种泡沫在质量远大于0.74时气泡仍可保持球形。

图6 PH1井与周边井的产量对比图

图7 PH1-006井与周边井的产量对比图

4 结论

本文提出的粘弹性表面活性剂溶于水后,可形成类似于聚合物的蠕虫状胶束结构。这种胶束在较低浓度时,不会明显增加水的粘度(<5mPa·s),但可吸附在气水界面,形成比单独表面活性剂要强得多的吸附层,增加泡沫的稳定性,使半衰期长达1~2h。

该泡沫压裂液的切速为170s-1时的表观粘度远大于50mPa·s,压裂液具有良好的悬砂能力。

这种粘弹性表面活性剂形成的泡沫压裂液主要靠增加吸附层的强度,而不是靠增加水的本体粘度来增加泡沫的稳定性,不存在需要破胶以及对储层损害问题,比第二代和第三代泡沫压裂液具有优越性。

通过在煤层气井中的现场应用,氮气泡沫压裂井的增产效果非常显著。通过排采分析发现,氮气泡沫压裂井的产量增加在常规水力压裂井产量的3倍以上。

在国家“十五”攻关项目资助下,开始进行了氮气泡沫压裂技术的研究,并在潘河示范项目中进行了工业试验,实践表明,该项技术具有巨大的推广应用前景。

参考文献

[1]Zebrowitz M.Thomas B D.1989.Coalbed stimulation are optimized in Alabama basin.OGJ.87(4):61~72

[2]Blauer R.E.Holcomb D L.1975.Foam fracturing shows success in gas/oil formations.OEJ.73(31):57~60

[3]Watkins E.K.Wendoff C L.Ainley B R.1983.A New crosslinked foamed fracturing fluid.SPE.12127

[4]贺承祖,华明琪.2003.压裂液对储层的损害及其抑制方法.钻井与完井液,20(1):49~53

[5]贺承祖,华明琪.1995.油气藏物理化学.成都:成都电子科技大学出版杜

[6]贺承祖,华明琪.1996.水锁效应研究.钻井与完井液,13(6):13~15

[7]Van Krevelen.1981.Coal Science and Technology.Zlesvier pab company

[8]Righmire C T.1984.Coalbed methane resource AAPG,32(17):1~13

[9]贺承祖,华明琪.2005.低渗砂岩气藏岩石的孔隙结构与物性特征.新疆石油地质.26(3)280~284

[10]Conway M W.Penny G S.Schcaufnagel R D.1993.Fracturing fluid Leakoff and damage mechanism in coalbed methane reservoirs Rock Mountain Resional Meeting/low permeability Reservoirs symposium and Exhibition:245~260

[11]赵庆波等著.1999.煤层气地质与勘探技术.北京:石油工业出版杜

[12]肖进新,赵振国编著.2003.表面活性剂应用原理.北京:化学工业出版杜

[13]Adamson A W.1983.Physical chemistry of surfaces.5Ed.Jolm-Wiley

[14]Magid L J.1998.The surfactant-polyelectrolyte analosy.JPC.102(21):4064~4074

[15]Economides M.J.Nolte K G.1992.Reservoir Stimulation.3Ed.Schlumberger ecation services USA

❻ 四甲氧基甲基甘脲固化:耐久性高光、无光和皱纹粉末涂料的参考文献有哪些

一、引言 在聚乙烯生产过程中,会产生少量的低聚物即低相对分子质量聚乙烯,又称高分子蜡简称聚乙烯蜡。因其优良的耐寒性、耐热性、耐化学性和耐磨性而得到应泛的应用。正常生产中,这部分蜡作为一种添加剂可直接加到聚烯烃加工中,它可以增加产品的光译和加工性能。高分子蜡是*良好的钝感剂,同时也可作塑料、颜料的分散润滑剂,瓦楞纸防潮剂,热熔粘合剂及地蜡,汽车美容蜡等。 二、化学性质 聚乙烯蜡R-(CH2-CH2)n-CH3,分子量1000-5000,是白色、无味、无臭的惰性物质,可在104-130℃下熔融,也可以在高温时溶解于溶剂和树脂中,但在降温时仍会析出,它的析出细度与冷却速度有关:慢速冷却得到较粗的颗粒(5-10u),快速冷却析出较细的颗粒(1.5-3u)。在粉末涂料的成膜过程中,当涂膜冷却,聚乙烯蜡从涂液中析出,形成细微颗粒,浮在涂膜表面,起到纹理、消光、滑爽、抗擦划伤作用;适当地选择微粉蜡和涂料体系可得到各种花纹。 三、技术发展 微粉技术是近10年发展起来的一项高新技术,一般把粒径小于0.5μm的粒子称为超微粒子20μm以下的称为微粒子,超微粒子的集合体称为超微粉体。 高分子微粒制备主要有了3种途径:一是由粗粒子出发,用机械粉碎法,蒸发凝缩法和熔融法等物理的方法;二是利用化学试剂的作用,使形成的各种分散状态的分子逐渐长成期望大小的微粒,可分为溶解和乳化两种分散方法;三是直接调节聚合或降解制备。如PMMA微粉、可控分子量PP、分散聚合制备PS微粒子、热裂解成辐射裂解制PTF微粉。我们在国内首先制备出PWEax微粉,经上海市粉体工程中试基地测定达到国外同类产品先进水平。主要工艺过程是物理方法。 (一)PEWax微粉的应用 1、涂料用聚乙烯蜡可以制备高光泽溶剂性涂料水性涂料、粉未涂料、罐头涂料、UV固化、金属装饰涂料等,还可以作为纸板等日用防潮涂料。 2、油墨、套印光油、打印油墨。PEWax可以用来制备凸版水性油墨,溶剂性凹版油墨,石印/胶印、油墨、套印光油等。 3、化妆品、个人护理品。PEWax可以作为粉饼、防汗剂/祛臭剂原材料。 4、卷材用微粉蜡。卷材用蜡有两个要求:即在提高涂膜表面滑度和硬度时,不能影响涂料的流平和对水的敏感性。 5、热熔粘合剂。PEWax微粉可以制备烫印用热熔粘合剂。 6、其它应用。PEWax还可以作铸压金属部件、发泡部件的隔离剂、橡塑片材、管材添加剂,还可以用作紫油流变改性剂和电流变体,也可以作为母料的载体和润滑剂。 (二)改性聚乙烯蜡的发展 我们在20世纪90年代初进行了低相对分子质量聚乙烯蜡的改性工作,关于羧化,接枝也有不少报道。国外申请专利的有德国、法国、波兰、日本。国内也申请了两相相关专利。 从文献调研和市场分析看,聚乙烯蜡和改性聚乙烯蜡,特别是微粉化后将会有更长足的发展。聚乙烯微粉蜡的表面效应、体积效应为在各新产品开发提供了优异的物理化学性能,为适应油墨、涂料、整理剂等各种领域要求也将有更多的系列超细微粉问世。 四、在涂料中的应用及作用机理 涂料用蜡主要以添加剂的形式加入,蜡类添加剂一般以水乳液形式存在,最初是用于改善涂膜的表面防扩性能。主要包括提高涂膜的平滑性、抗划性以及改善防水性。此外,它还可以影响涂料的流变性能,它的加入可以使金属闪光漆中铝粉这类的固体颗粒的取向变得均匀。在无光漆中它可以作为消光剂,根据其粒径和粒径分布,蜡类添加剂的消光效力也各不相同。因此,蜡添加剂即有适于有光漆的也有适用于无光漆的。微晶化改性聚乙烯蜡,可用于改善水性工业涂料的表面性质。如Ffka-906,加入后平滑性、抗粘连性、抗划伤性及消光作用都有加强,而且可以有效抑制颜料沉淀。添加量为0.25%-2.0%。 (一)蜡在涂膜中所提供的特点 1、耐磨、防刮伤、防擦伤:蜡分布在涂膜中借此保护涂膜、防止刮伤、擦伤并提供耐磨损性;譬如集装箱涂料、木器涂料、装饰涂料等均需此功能。 2、控制磨擦系数:通常利用它的低摩擦系数,提供涂膜优异的滑度,同时因不同种类的蜡而有特殊丝绸柔和的触感。 3、耐化学品性:由于蜡的安定性而能赋予涂膜更佳的耐水,耐盐水喷雾等性能。 4、防止贴合:避免涂装物或被印刷物有回粘、贴合现象。 5、控制光泽度:选择适当的蜡,依不同添加量而有不同的消光效果。 6、防止二氧化硅等硬结沉积,增加涂料储存安定性。 7、防止金属刮痕(Antimetal Marking):尤其在印罐涂料,除了提供良好的加工性,更可以起到保护印罐储存物的储存安定。 (二)蜡在涂料中的特点与机理 蜡的种类繁多,而其展现在涂膜的形态我们大致可分成下列三种: 1、起霜效果:例如选用的蜡的熔点低于烘烤温度时,由于蜡在烘烤时熔融成液态,成膜冷却后,即在涂面上形成似霜的薄层。 2、球轴效果:此效应在于蜡由其本身的粒径大小与涂层膜厚相近,甚至大一些,而显露在外,使得腊的耐刮、防擦伤性能可以显现。 3、漂浮效应:不论蜡的粒子形态,蜡在成膜过程中漂移至涂膜表面均匀的分散开来,使得涂膜最上层有蜡的保护,显现蜡的特点。 (三)蜡生产方法 1、熔融法:以溶剂在密闭、高压的容器下加热熔融,然后在适当的冷却条件下出料,获得成品;缺点是质量不易控制,操作成本高且危险,同时某些蜡并不适用这种方法。 2、乳化法:可得又细又圆的粒子,适用于水性系统,但所加入的表面活性剂会对涂膜的耐水性造成影响。 3、分散法:将蜡加入树蜡/溶液中,利用球磨机、滚筒或其他分散设备分散;缺点是难获得高质量的产品,且成本高。 4、微粉化法:可采用喷射微粉机(Jet-Microniser)或微粉/分级机(Microniser/Classifier)生产工艺,即是利用粗腊在高速状态下相互间激烈碰撞后逐渐碎裂成微粒状,然后再由离心离心力作用,在失重下被吹逸出来收集而得。此为目前应用最多的制造方法。 虽然蜡的使用方法颇多,但仍以微粉化蜡为最多,而市面上微粉化腊的种类繁多,且各制造厂家生产工艺也均有差异,使得各厂微粉化蜡的粒径分布,相对分子质量、密度、熔点、硬度等性质均有些差异。 聚乙烯蜡的制造,一般有高压、低压聚合法;其中高压法的制得的聚乙烯蜡带支链,密度与熔融温度均较低,而低压法则可制得直链的低比重的腊;PE腊有各种不同的密度,例如同为低压法制得的非极性PE蜡而言,通常低密度者(低支链、高结晶度)较坚硬,有较佳的耐磨损及抗创痕性,但在滑性及降低摩擦系数上则稍差。

❼ 白色污染研究参考文献有哪些急求

我先声明一点:因为这也是我们今年的研究性报告的主题,所以这些资料供你参考一下,希望最好你是有选择性的参考一下,不要太一样了,但更详细的你还可以去网上查一下,很好查的。 白色垃圾主要是废弃的难降解塑料制品,因颜色多为白色所以统称为白色垃圾.
塑料制品的成分大多为聚苯乙烯、聚丙烯、聚氯乙烯等高分子化合物制成,依靠自然分解很困难,燃烧处理又产生大量的有毒致癌、致畸物质,如苯\甲烷\硫化氢\甲苯等,吸如人体后会积聚在人体内,长期吸如会对人体造成严重的不良后果.

先说危害:
地球是我们赖以生存的家园,并为我们提供了如此美丽的环境。但是随着社会经济的迅速发展和城市人口的高度集中,生活垃圾的产量正在逐步增加,我们的这个家园正在被垃圾所包围。
一般生活垃圾可分为废纸、塑料、玻璃、金属和生物垃圾等五类。垃圾对人类生活和环境的主要危害是:
第一、占地过多。堆放在城市郊区的垃圾,侵占了大量农田。垃圾在自然界停留的时间也很长:烟头、羊毛织物1—5年;橘子皮2年;易拉罐80—100年;塑料100—200年;玻璃1000年。
第二、污染空气。垃圾是一种成份复杂的混合物。在运输和露天堆放过程中,有机物分解产生恶臭,并向大气释放出大量的氨、硫化物等污染物,其中含有机挥发气体达100多种,这些释放物中含有许多致癌、致畸物。塑料膜、纸屑和粉尘则随风飞扬形成“白色污染”。
第三、污染水体。垃圾中的有害成份易经雨水冲入地面水体,在垃圾堆放或填坑
来。垃圾直接弃入河流、湖泊或海洋,则会引起更严重的污染。你看:秦淮河水面上漂着的塑料瓶和饭盒,树枝上挂着的塑料袋、面包纸等,不仅造成环境污染。而且如果动物误食了白色垃圾不仅会伤及健康,甚至会死亡。
第四、火灾隐患。垃圾中含有大量可燃物,在天然堆放过程中会产生甲烷等可燃气,遇明火或自燃易引起火灾、垃圾爆炸事故不断发生,造成重大损失。
第五、有害生物的巢穴。垃圾不但含有病原微生物,而且能为老鼠、鸟类及蚊蝇提供食物、栖息和繁殖的场所,也是传染疾病的根源。

白色污染是我国城市特有的环境污染,在各种公共场所到处都能看见大量废弃的塑料制品,他们从自然界而来,由人类制造,最终归结于大自然时却不易被自然所消纳,从而影响了大自然的生态环境。从节约资源的角度出发,由于塑料制品主要来源是面临枯竭的石油资源,应尽可能回收,但由于现阶段再回收的生产成本远高于直接生产成本,在现行市场经济条件下难以做到。面对日益严重的白色污染问题,人们希望寻找一种能替代现行塑料性能,又不造成白色污染的塑料替代品,可降解塑料应运而生,这种新型功能的塑料,其特点是在达到一定使用寿命废弃后,在特定的环境条件下,由于其化学结构发生明显变化,引起某些性能损失及外观变化而发生降解,对自然环境无害或少害。例如淀粉填充塑料,首先其所含淀粉在短时间内被土壤中的微生物分泌的淀粉酶迅速分解而生成空洞,导致薄膜力学性能下降,同时配方中添加的自氧剂与土壤中的金属盐反应生成过氧化物,使聚乙烯的链断裂而降解成易被微生物吞噬的小碎片被自然环境所消纳,同时起到改良土壤的作用。

一、视觉危害:
散落在环境中的塑料袋影响城市、校园景观,塑料袋漫天飞舞,给人的视觉带来不良刺激,影响视力及心情。
二、造成危害:
(1) 塑料长期在突然、水体残留,造成土壤硬化、沙漠化,间接影响农作物的产量,导致减产以及水体恶化。
(2) 抛弃在水陆中的废弃物、破坏了动植物的栖息地。
(3) 生活垃圾被运往郊外,堆积成山占用建筑用地、生活用地,而且焚烧成为一些城市、乡村处理生活垃圾的主要方式,间接造成空气污染。
(4) 部分塑料含有毒性,若有将热食物装进去会发生部分化学反应,影响人类身体健康。
通过这次调查活动,我们了解到:随着工农业的生产迅速发展,为人类创造了前所未有的巨大物质财富的同时,也使环境付出沉重的代价。生态破坏、环境污染对人类生存发展已经构成严重威胁。每当大风刮起,空气就弥漫着黄色的粉尘,有时在空中还有飞舞塑料袋,使人们出门狼狈。因此,解决环境问题成为刻不容缓的任务。我们市政府和校园清洁工日夜与“白色污染”在搏斗,但都改变不了现状,而且光靠环卫工人是远远不够的,还必须提高我们大家的环保意识,我们每个人都有保护环境的义务。同时,我们也懂得了:我们是社会的主人,改善地球环境是我们这一代人义不容辞的责任和义务。我们应努力增强环保意识,节约资源。如果全球人人破环、天天破坏,地球就会变成垃圾场;如果全球人人环保、天天环保,就能创造一个美好的家园。让我们携起手来行动起来共同努力保护环境。
为此我们建议从我们自己做起,从一点一滴小事做起,要做到:
1、不随地乱扔垃圾及废弃物,将垃圾放到指定的垃圾箱内。
2、不浪费,包括不浪费一张纸、一滴水、一分钱。
3、尽量不用、少用塑料袋要积极使用可再生的生活用品,减少白色污染
4、发现身边破坏环境的行为要及时提醒和制止,上街购物时,尽量自己携带环保购物袋。
5、要爱护大自然、了解大自然、保护大自然,和大自然交朋友。
6、4月22日地球日,6月5日世界环境日时,应组织同学们到社会宣传,提高人们环保意识、相信通过大家共同努力,我们彼此的家园会变得越来越美。

人类在享受了工业革命带来物质以及高神上的便利后,人与自然的平等、和谐也被打破;每天大量污染物被排放到环境当中,人类也时常受到大自然的报复。为了更好处理好人与自然之间的关系,使人与自然环境更加和谐共存,我们小组对身边的白色污染进行调查,从而也使我们更好地了解白色污染的危害性,并决定从自身做起,加大宣传使更多的人加入到保护环境的行列中来。
我们对白色污染进行调查,提出什么是白色污染的问题。经过我们查阅资料和询问有相关知识人员,得到“白色污染”主要指塑料是一类高分子材料。以石油为原料可以制得乙烯、丙烯、氯乙烯、苯乙烯等,这些物质的分子在一定条件下能相互反应生成分子量很大的化合物(即高分子):聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯。我们通常使用的塑料就是由上述四种高分子组成的材料(聚乙烯、聚丙烯薄膜抖动时声音发脆,而聚氯乙烯薄膜则较柔软,抖动时无发脆声音;发泡塑料一般是聚苯乙烯,。“白色污染”主要成分为:聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯树脂等。
随着塑料产量不断增大,成本越来越低,我们用过的大量农用薄膜、包装用的塑料袋和一次性塑料餐具在使用后被抛弃在环境中,给景观和环境带来很大破坏。由于塑料包装物大多呈白色,它们造成的环境污染被称为白色污染。
白色污染的现状
第一、侵略土地过多。塑料类垃圾在自然界停留的时间也很长,一般可达100—200年。
第二、污染空气。塑料、纸屑和粉尘随风飞扬。
第三、污染水体。河、海水面上漂着的塑料瓶和饭盒,水面上方树枝上挂着的塑料袋、面包纸等,不仅造成环境污染;而且如果动物误食了白色垃圾会伤及健康,甚至会因其绞在消化道中无法消化而活活饿死。
第四、火灾隐患。白色垃圾几乎都是可燃物,在天然堆放过程中会产生甲烷等可燃气,遇明火或自燃易引起的火灾事故不断发生,时常造成重大损失。
第五、白色垃圾可能成为有害生物的巢穴,它们能为老鼠、鸟类及蚊蝇提供食物、栖息和繁殖的场所,而其中的残留物也常常是传染疾病的根源。
第六、废旧塑料包装物进入环境后,由于其很难降解,造成长期的、深层次的生态环境问题。首先,废旧塑料包装物混在土壤中,影响农作物吸收养分和水分,将导致农作物减产;
“白色污染”物主要含有有毒化学成分,那对周围环境带来一定影响,那么究竟是什么造成了“白色污染”的原因呢?
围绕这个话题,我们小组访问了一些学生、老师及领导,也得到他们的说法。
有些同学说:“造成污染主要来源是平常不自觉,没有很好地重复使用塑料袋,自己约束自己能力不强,受到他人的影响,认为自己一个人环保在世上也没多大作用。”
有些同学说:“社会的高速发展,带动物质生活的不断进步,人类在享受物质生活带来的快感,造成白色污染那是必然结果,否则社会经济就会止步不前,人类也不会进步”。
当到这里时老师也有话要说:“白色污染已成为现代社会普遍现象,要想杜绝则是不可能,只有从思想上教育,让自己的学生意识到污染的危害及影响和保护环境的必要性,社会才会改变现状,污染也会减少甚至无污染。”
而当我们访问相关领导时,他们说:“国家虽有相关法律文件,但在县级以下的地方难以实施,更没垃圾回收以及利用,只是采用焚烧或堆积,严重影响当地的水源、土壤及人们生活状况”。
我们小组根据同学、老师、领导的答复,经过讨论和相关的资料,总结了以下几点造成“白色污染”的主要原因。
1、塑料垃圾没有得到妥善处理和管理,垃圾没有分类回收,能回收没有回收利用而采取焚烧、填埋等不科学方式处理。
2、许多企业对于生产过程中的白色污染没有科学处理,放任直流。
3、 我国现有法律法规虽有对使用塑料袋规定,但没有对塑料废弃物的处理制定出过硬的相关法规。
4、我国虽响应世界宣传保护环境的口号,但总的来讲中国人受到的教育水平不如西方,人们的保护意识也较单薄,滥用和随意乱倒塑料制品相当普遍。
现在我们小组更充分了解我们日常生活废弃物产生原因,我们会更好约束自己,告诫朋友、同伴合理使用塑料制品。我们小组的一个成员提出既然生活中有那么多白色污染,那它到底影响到我们生活及环境的哪些方面?带来什么负面影响?
为此我们小组开始到附近池塘、乡村做些访问及调查。
有的农民说:“今年来池塘养鱼收入不是那么理想,有时捕捉的鱼还发生变异,鱼类逐渐减少,水体开始发臭,现在养鱼已经负利了。”
当我们从池塘里打捞时,发现了许多塑料制品,这就是节省脚步,顺便把生活废弃物扔入池塘中造成的后果。现在水源被污染,养水产品已成为不可成的事实,这又给我们上了一课。
我们又去田野调查,发现有几块地已经长满荒草被丢弃。土地是农民命根子,这时我们询问村支书,正如他所说:“这块土地的土壤硬化,出现土地沙漠化,导致粮食年年减产,这是迫不得已的事”。经过一番调查,我们总结“白色污染”的危害如下: