当前位置:首页 » 素材参考 » 数列极限参考文献
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

数列极限参考文献

发布时间: 2021-03-22 12:13:03

『壹』 什么是数列极限的收敛速度,论文需要,谢谢啦!

我给个初稿吧
假设{xn}、{yn}两数列在某变化过程中同时趋于A,记un=│xn-A│,vn=│yn-A│,B=limun/vn
则un和vn都是无穷小量
若B=0,则说xn比yn高阶,xn比yn的收敛速度快
若B=常数b(b>0),则说xn的收敛速度是yn的1/b倍
若B=∞,则说xn比yn低阶,xn比yn的收敛速度慢

『贰』 求数列极限的几种方法

摘要:本文介绍了计算极限的几种方法,讨论如何用定积分、幂级数、微分中值定理、O-Stolz公式、泰勒展式等方法计算极限.关键词:计算极限;定积分;幂级数;泰勒展式1. 引言极限思想是许多科学领域的重要思想之一. 因为极限的重要性,从而怎样求极限也显得尤其重要. 对于一些复杂极限,直接按照极限的定义来求就显得非常困难,不仅计算量大,而且不一定能求出结果. 为了解决求极限的问题,有不少学者曾探讨了计算极限的方法(见 [1]-[4]). 本文也介绍了计算极限的几种方法,并对文献[1]-[4]的结论进行了推广,讨论如何利用定积分、幂级数、O-Stolz公式、泰勒展式、微分中值定理计算极限,并且以实例来阐述方法中蕴涵的数学思想.2. 利用定积分求极限3. 利用幂级数求极限 利用简单的初等函数(特别是基本初等函数)的麦克劳林展开式,常能求得一些特殊形式的数列极限.4. 利用级数收敛性判定极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系. 因此,数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.5 .利用O-Stolz公式计算极限6. 利用泰勒公式求极限等价无穷小代换是求极限的重要方法,往往可以减少计算量,使问题得以简化. 但一般说来,这种方法仅限于求两个无穷小量的乘积或除的极限,而对两个无穷小量非乘且非除的极限,以上方法不能凑效,而Taylor公式代换是解决此类极限问题的一种有效的方法.7. 利用微分中值定理求极限Lagrange定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛,下面我们来看一下Lagrange定理在求极限中的应用 .参考文献[1]裴礼文. 数学分析中的典型问题与方法[M]. 北京:高等教育出版社,1993. [2]刘玉琏. 数学分析讲义[M]. 北京: 高等教育出版社, 1997.[3]同济大学数学教研室. 高等数学(第四版)[M]. 北京:高等教育出版社, 1996.[4]费定晖,周学圣. 数学分析习题集题解[M]. 山东: 山东科学技术出版社,2002.(作者杨海珍系首都师范大学在读研究生)注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。(剩余0字)

『叁』 数列极限存在的条件研究开题报告怎么写 要求各内容都有 速求 谢谢

你好同学,在线帮你填写

『肆』 关于数列极限的定义

数列有极限,即当n趋向无穷大时,数列的项Xn无限趋近于或等于a,

任意取一个值ε,是表明无论ε是多小的数,Xn与a的差总小于ε,就是Xn无限趋近于或等于a。

看n>N时,注意原话是:……对于任意小的ε,总存在正整数N,使得当n>N时,|Xn-a|<ε,……。这是表明,无论ε多小,当n足够大时,都可以满足|Xn-a|<ε。就是即使ε小到非常小(趋近于0),当n大到足够大的程度(趋向于无穷大)也会满足Xn与a的差小于ε(趋近于0)。

(4)数列极限参考文献扩展阅读:

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时,使用等价无穷小的条件:

被代换的量,在取极限的时候极限值为0;

被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

『伍』 数列极限存在性证明 用导数的方法为什么可以得到如下结论

极限在高等数学中,极限是一个重要的概念。极限可分为数列极限和函数极限,分别定义如下。数列极限:设为数列,A为定数。若对任给的正数ε,总存在正整数N,使得当n>N时,有 |An - A|A(n->∞), 读作“当n趋于无穷大时,An的极限等于A或An趋于A”。函数极限:设f为定义在[a,+∞)上的函数,A为定数。若对任给的ε>0,存在正数M(>=a),使得当x>M时有: |f(x)-A|A(x->+∞)

『陆』 数列极限与函数极限的关系与区别 数学毕业论文

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.
1.关于数列极限
1.1数列
初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.
1.2数列的极限的定义
定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=a.
2.关于函数极限
2.1x→∞时函数极限
定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.
现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=A.
2.2x→x时函数极限
定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.
类似可定义f(x)=A及f(x)=A.
3.数列极限与函数极限的异同及根本原因
从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.
二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.
正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.
综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.