当前位置:首页 » 素材参考 » 基于igbt的高压脉冲电源设计的参考文献
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

基于igbt的高压脉冲电源设计的参考文献

发布时间: 2021-03-20 17:50:01

A. 高压脉冲电源的介绍

高压脉冲电源是高压电源的一种,是在高压直流电源的基础上增加了开关电路,从而输出脉冲幅度可调、脉冲宽度可调、脉冲频率可调、脉冲输出个数可设定的一种高压电源。

B. 电磁炉保险管.桥.功率管都炸了更换后5V18V正常高压是335V电源上串灯泡装上加热线盘上电灯泡常亮

1. 主板与面板干净的情况下;再继续下面查;
2.先有条件正常; 交流220V 直流300V 22V或20V(部份机型) 稳压18V(+ - 误差必须控制在1V 之内)个别机型稳压也有12V , 稳压5V(+ - 误差必须控制在1V之内)。
3.加热线盘正常, 并联线盘0.27UF 或O.3UF 或O.33UF ,几个大电阻,二极管,
4. IGBT激励驱动对管(8050 8550 换IGBT时候一起换新),并联与IGBT E极G极18V稳压管,
正常时候 IGBT +极与- 之间有0.8~1.2V波动脉冲个数信号。
5. 电流互感器检测;是否有;0.025V交流电压,
6. 负温度电阻NTC(炉面与IGBT)是否正常? 是否有+5V (负温度电阻NTC在常温25℃的情况下应该阻值在46~58K之间,有的电磁炉负温度电阻NTC也用100K。单个负温度电阻NTC在98℃ 开水里 ,它是电阻值是2~3K。
美的电磁炉爆损IGBT管与相关电路故障及维修-------李少怡
目前,在小家电维修界无论是专业厂家售后维修、或家电维修爱好者,凡从事电磁炉维修行业大家知道;电磁炉维修是最怕爆损IGBT 管故障。时下,每当客户送修电磁炉被确诊为爆损、屡损IGBT 管故障时,人们时常总感到惊讶!有时甚至还感到束手无策的“棘手\"活,所以很**修部就以换板,或其他理由就婉言谢绝拒修了!其实这样处置是另有原因:由于部分维修工,对电磁炉各电路缺乏基础知识的了解及研究,按步就搬进行维修,结果在维修过程中若出现屡损高额昂贵的IGBT 管。那么,不但挣不到报酬,反而还要赔老本,所以对维修屡损、爆损IGBT 管的故障就望而却步。
其实,笔者认为,维修该类故障并不难!维修前,首先应分清:是人为因素造成,还是元器件受损,或元器件存在质量问题。检修时,可借助万用表的检测宿小故障潜在范围,“对症下药”,维修电磁炉才能真正做到得心应手。
一、人为因素造成。
1. 锅具的选用。
电磁炉的锅具选用,应该严格按照厂家随机原配的锅具进行使用。厂家在设计电磁炉加热功率电路时,首先根据锅质的“磁阻”大小而定的,不同的锅具“磁阻”会决定电磁炉检锅脉冲个数也不同。如美的电磁炉锅具不锈钢(304)“磁阻”,比不锈铁(430)“磁阻”要大,在同等2000 W 电磁炉上,若将不锈铁(430)锅具放上进行加热是无法达到额定2000 W 功率;反之,将不锈钢(304)锅具放上进行加热,就轻而易举达到2500 W 甚至更高。所以说锅具选用不当,会导致电磁炉出现爆损IGBT 管原因之一。
2:LC振荡电路。
LC 振荡电路实际上是把电能转换成磁能,由IGBT管、加热线圈盘L 及谐振电容C5 组成高频LC 振荡回路,并通过IGBT 管高频开关导通、截止的作用,来实现控制电磁炉的加热功率。
当LC 振荡电路受损时,会致使电磁炉出现爆损IGBT 管、报警不加热及不报警不加热等故障。其维修步骤如下:
一台美的2005 年标准通板MC-SH2111 型电磁炉,取下加热线圈盘,将该电磁炉上电待机,用万用表直流电压(50 V)档红表笔(+)接在IGBT 管集电极c 上,黑表笔(-)接在整流桥负极上,将电磁炉上电,此时万用表指针快速从0 V 开始上升至+45 V 后,又回降至+0.6 V 电压,为正常。
( 1)谐振电容容量与电压峰值①当谐振电容C5 为(0.3 μF/1200 V)时,测IGBT管集电极c 峰值对地为+45 V 至+0.6 V 电压,正常。
② 当谐振电容C5 为0.27 μF/1200 V 时,测IGBT 管集电极c 峰值对地为+42 V 至+0.6 V 电压,正常。
若测IGBT 管集电极c 峰值对地0 V 电压时,为谐振电容C5 失效或开路损坏及同步电压比较电路中比较器U2D(LM339)损坏,使13脚输出高电平(正常为+0.1 V)。这时,若接上加热线圈盘上电,会致使电磁炉上电时出现爆损IGBT 管故障。
(2)当测IGBT 管集电极c 峰值对地电压始终持续在+225 V 或+45 V 时,为高压供电电路中滤波电容C4(5 μF/275 V)失效或开路。这时,若接上加热线圈盘上电,会致使电磁炉上电加热时出现爆损IGBT 管、报警不加热、不报警不加热、不停地检锅及断续加热等故障。
(3)当测IGBT 管集电极c 峰值对地为+25 V 至+0.2 V 电压时(正常为+45 V 至+0.6 V),为谐振电容C5 失效或开路。这时,若接上加热线圈盘上电,会致使电磁炉上电加热时出现爆损IGBT 管、报警不加热及不报警不加热等故障。
(4)将电磁炉上电,当测IGBT 管集电极c 对地为+0.6 V 电压,正常,装上加热线圈盘测IGBT 管集电极c 对地为+305 V 电压,正常。这时,若上电开机,放锅加热,会致使电磁炉出现爆损IGBT 管故障,为加热线圈盘损坏所致。
(5)将电磁炉上电,当测IGBT 管集电极c 对地为+0.6 V 电压,正常,装上加热线圈盘测IGBT 管集电极c 对地为+305 V 电压,正常。这时,若上电开机,放锅加热,会致使电磁炉出现爆损IGBT 管故障,为IGBT 管控制极c 对地分压贴片电阻R38 开路损坏所致。
(6)将电磁炉上电,当测IGBT 管集电极c 对地为+0.6 V 电压,正常,装上加热线圈盘测IGBT 管集电极c 对地为+305 V 电压,正常。这时,若上电开机,放锅加热,会致使电磁炉出现爆损IGBT 管故障,为IGBT管控制极G 限幅稳压二极管Z1 漏电所致。
同步电压比较电路。
电磁炉加热线圈L 与高频谐振电容C3 是通过IGBT 管高频开关快速导通、截止,形成LC 振荡电路。
LC **振荡的半周期时间出现峰值电压,亦是IGBT管截止时间,这时开关脉冲没有到达。这个时间关系不能错位,如峰值脉冲还没有消失,而开关脉冲已提前到来,就会出现很大的导通电流,导致IGBT 管烧坏。因此,必须保证开关脉冲前沿与峰值脉冲后沿相同步。
当同步电压比较电路受损时,会致使电磁炉在上电加热时出现爆损IGBT 管、报警不加热、不报警不加热、不停地检锅及断续加热等故障。其维修步骤如下:
一台美的MC-SF2012 型电磁炉,通常,笔者在维修电磁炉同步电压比较电路时,为了避免IGBT 管爆管,先取下加热线圈盘,因此,就造成比较电路IC2C(LM339)⑨脚(V+ 同相输入端)对地为0 V 电压(正常为+3.6 V),使比较电路IC2C辊輲讹脚(输出端)为低电平(正常为+18 V)。针对该故障,在IC2C(LM339)⑨脚(V+ 端),用普通电阻1.5 kΩ 与整机+5 V 电压端相联构成同步电压比较电路(V+ 取样电压),提供维修检测同步电压比较电路时使用,并将电磁炉上电待测。
用万用表直流电压(10 V)档测同步电压比较电路中IC2C(LM339)⑧脚(V- 反相输入端)对地为+3.4 V电压,正常,若该工作点电压异常,多为取样电阻R18(330 kΩ/2 W)变值或开路损坏,电容C13(2000 pF)漏电或击穿及IC2C(LM339)损坏,会致使电磁炉上电加热时出现报警不加热、不报警不加热等故障。
测IC2C(LM339)⑨ 脚(V+ 同相输入端)对地为+3.6 V 电压,正常。若该工作点电压异常,多为取样电阻R19(240 kΩ/2 W)、R20(240 kΩ/2 W)变值或开路,电容C10(470 pF)漏电或击穿及IC2C(LM339)损坏,会致使电磁炉上电加热时出现爆损IGBT 管、报警不加热、不报警不加热、不停地检锅及断续加热等故障。
测IC2C(LM339)辊輲讹脚(输出端/OUT)对地为+18 V电压,正常。若该工作点电压异常,多为贴片电阻R39(2 kΩ)变值或开路,贴片二极管D20(1N4148)漏电或击穿,会使电磁炉上电加热时,出现报警不加热的故障。
另外,当同步电压比较电路中IC2C(LM339)V- 取样电压与V+ 取样电压相近时(正常为V-、V+ 取样电压应相差+0.2~+0.35 V),否则,会使电磁炉在上电加热时出现不定期爆损IGBT 管及断续加热等故障。
当电磁炉出现“屡损IGBT管”故障,维修时:建议将电磁炉主电路板、及控制显示灯板,用“天那水”进行去油污清洗、吹干后再修。
1、先将受损元器件更新如:保险管(12A)、整流桥(RS2006)、IGBT管(IH20T120)。
2、在电磁炉主电路板电源线L端串联接入220V/40W灯泡后,上电待机,用500型万能表相应直流电压档测高压供电电源对地为+305V电压,正常,测低压供电电源对地为+18V电压、及AN7805输出端对地为+5V电压,正常(在确保整机“三” 电压正常后再修)。
3、取下加热线圈盘,用500型万能表直流电压50V档,红表笔接在IGBT管集电极C上、黑表笔接在整流扁桥的负极上,测电磁炉上电时浪涌峰压值以鉴定电磁炉是否为正常。如以下例举:
1)美的MC-SH208型上电时,浪涌峰压值为先上升至+45V后降至+0.7V电压,为正常。
2)美的MC-SF2012型上电时,浪涌峰压值为先上升至+32V后降至+0.5V电压,为正常。
3)美的MC-SY191C型上电时,浪涌峰压值为先上升至+32V后降至+1.2V电压,为正常。
4)美的MC-CF202型上电时,浪涌峰压值为先上升至+75V后降至+1.4V电压,为正常。
5)美的MC-SY183B型上电时,浪涌峰压值为先上升至+33V后降至+0.6V电压,为正常。
6)美的MC-PSY18A型上电时,浪涌峰压值为先上升至+20V后降至+1.4V电压,为正常。若以上工作点异常,多为滤波电容器(5µF/275V)、及谐振电容器(0.27µF/1200V至0.3µF/1200V)、漏电或失效。
4、装上加热线圈盘,用500型万能表直流电压10V档,测同步比较电路取样电压V-,应小等于取样电压V+的+0.2V至+0.35V电压,为正常。
5、焊下IGBT管控制极G上的限幅稳压二极管(18V),用500型万能表10KΩ档测试是否漏电,建议更新它,否则将造成屡损、爆损IGBT管!
6、当电磁炉的+18V低压供电电源与排风电扇电源共用一起时,必须确保排风电扇正常,否则将造成屡损、爆损IGBT管!
7、将待修电磁炉装好,准备上电试机;
1)当上电开机放锅加热时,若灯泡一闪亮后即灭为整机已修复,方可取下灯泡直接试机!
2)当上电开机放锅加热时,若灯泡“全亮”为“故障存在”为此,切不可取下灯泡直接试机!否则将再次出现“爆损IGBT管”故障发生,应继续查找潜在故障,可按以上维修方法继续进行。
损坏IGBT管大多因素:¬¬——张占生
电磁炉线盘是完成LC振荡的重要器件之一,它是将电能进行储存.及释放。有电场能.转换为磁场能的关键器件。电磁炉.输出功率的大小.效率的高低和线盘有较大的关联。为此对它应有必要的进一步地了解。就这个问题我谈一下我的见解,给朋友们一点启示,供各位朋友以参考和讨论。线盘的参数主要是两个方面:(1)是电感量,(2)是Q值. 而决定这两个参数的是铜线的外径大小、股数.和绕在线盘上的圈数的多少,还有就是线盘上附加的磁条的磁通量.和磁条数量的多少。线盘无磁条时, 要想提高线盘的电感量必须增加线圈的匝数,(股数,和圈数)这样做它不仅浪费了资源和成本的提高,而且导线增长直流电阻增大也不利于输出较大的功率。为此要附加磁条来提高它的电感量。(相同匝数的线盘磁条数量越多电感量越高)查资料得知,当今家用电磁炉线盘磁条有6条,8条,看下图

两种类型,绕线圈数,28,30,32,圈。最为常见的为28圈的较多。现在的电磁炉线盘有两种类型.参数为(1)电感量PSD系列为157uH。(2)PD系列为140uH
新型电磁炉线盘

包括线盘支架、线圈、磁条,线圈包括固定在线盘支架上的外环线圈和内环线圈,磁条包括与线圈对应设置的外圈磁条和内圈磁条,外圈磁条和内圈磁条分别呈放射状分布,其特征在于所述内圈磁条与外圈磁条在放射状分布,这样做使加热更均匀。提高加热效率,降低磁场的外泄,减小了电磁炉工作时对周围环境的影响。
关于Q值;是衡量电感器件的主要参数。是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。这个大家应都知道吧!
再,磁条是分体的,不是整体的其原因,电磁炉工作时磁条不至于形成涡流,而使磁条产生磁饱和现象,要知道磁条磁饱和后线盘电感量会大大降低,这样会损IGBT管的。
有以上所谈可知,电磁炉线盘上的磁条地重要性了,也可以解释我们维修员所提到的不知为什么屡爆IGBT管,但通过换线盘而排除故障的原因所在了。(是有磁条断裂,或磁条老化引起的电感量减小所致)。再就是线盘上的线圈和磁条击穿短路。其实我们在维修电磁炉当中,换炉盘的故障率很低,由于当今家用电磁炉的线盘的参数差别相差不大,为此应急维修互换还是可以的。只不过是电磁炉功率输出略有差异,当然还是换相同参数的为好!。
-张占生作图
图中1)微动开关
图中2)为检测电阻
图中3)为功率可调电阻
图中4)为电流互感器
图中5)LM339
图中6)电风扇
图中7)为高压电源虑波电容
图中8)为锅底温度控制传感器
图中9)为高频谐振电容

绝缘栅双极型晶体管,是由BIT(双极型三极管)和MOSFET(绝缘栅型场效应管组成的复合全控型电压驱动式电力电子器件)。IGBT 管有三个电极:栅极(或称控制极)G、集电极C 和发射极E。
提醒各位同行:IGBT 25N120与HT20R120 不一样 否则爆IGBT
下面图是 阻尼二极管:
阻止交流圈。

IGBT 有带阻尼二极管的,请把电磁炉上单个的阻尼管拆下不用。
简解IGBT :
绝缘栅双极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。
目前有用不同材料及工艺制作的IGBT,,但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合结构。
IGBT有三个电极,分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极) 及发射极E(也称源极) 。

从IGBT的下述特点中可看出,它克服了功率MOSFET的一个致命缺陷,就是于高压大电流工作时,导通电阻大,器件发热严重,输出效率下降。
IGBT的特点:
1.电流密度大,是MOSFET的数十倍。
2.输入阻抗高,栅驱动功率极小, 驱动电路简单。
3.低导通电阻。在给定芯片尺寸和BVceo下,其导通电阻Rce(on) 不大于MOSFET的Rds(on) 的10%。
4.击穿电压高,安全工作区大,在瞬态功率较高时不会受损坏。
5.开关速度快,关断时间短,耐压1kV~1.8kV的约1.2us、600V级的约0.2us,约为GTR的10%,接近于功率MOSFET,开关频率直达100KHz,开关损耗仅为GTR的30%。
IGBT将场控型器件的优点与GTR的大电流低导通电阻特性集于一体。是极佳的高速高压半导体功率器件。
目前458系列因应不同机种采了不同规格的IGBT,它们的参数如下:

(1) SGW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部不带阻尼二极管,所以应用时须配套6A/1200V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SKW25N120。
(2) SKW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部带阻尼二极管,该IGBT可代用SGW25N120,代用时将原配套SGW25N120的D11快速恢复二极管拆除不装。

(3) GT40Q321----东芝公司出品,耐压1200V,电流容量25℃时42A,100℃时23A,内部带阻尼二极管,该IGBT可代用SGW25N120、SKW25N120,代用SGW25N120时请将原配套该IGBT的D11快速恢复二极管拆除不装。
(4) GT40T101----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部不带阻尼二极管,所以应用时须配套15A/1500V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SGW25N120、SKW25N120、GT40Q321,配套15A/1500V以上的快速恢复二极管(D11)后可代用GT40T301。
(5) GT40T301----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部带阻尼二极管,该IGBT可代用SGW25N120、SKW25N120、GT40Q321、 GT40T101,代用SGW25N120和GT40T101时请将原配套该IGBT的D11快速恢复二极管拆除不装。
(6) GT60M303 ----东芝公司出品,耐压900V,电流容量25℃时120A,100℃时60A, 内部带阻尼二极管。

C. 一个涉及IGBT的电路,关断瞬间的高脉冲电压为什么不是烧坏IGBT却总是驱动芯片被烧坏

还真没见过这么大的IGBT。关断的瞬间续流二极管将流过很大的电流,引起发射极电位的抬高,如果驱动线联接点(主要是发射极端)距离发射极较远,或驱动电源的隔离不好或对地电容过大,有可能使电位反击到驱动芯片,引起驱动芯片击穿。幸好驱动芯片先穿,否则IGBT都不保。

D. IGBT驱动板,如果自己设计开关电源需要用变压器,请问那个厂家有这种变压器买的

开关电源原理及其应用

维修技术培训资料

第一部分:功率电子器件

第一节:功率电子器件及其应用要求
功率电子器件大量被应用于电源、伺服驱动、变频器、电机保护器等功率电子设备。这些设备都是自动化系统中必不可少的,因此,我们了解它们是必要的。
近年来,随着应用日益高速发展的需求,推动了功率电子器件的制造工艺的研究和发展,功率电子器件有了飞跃性的进步。器件的类型朝多元化发展,性能也越来越改善。大致来讲,功率器件的发展,体现在如下方面:
1. 器件能够快速恢复,以满足越来越高的速度需要。以开关电源为例,采用双极型晶体管时,速度可以到几十千赫;使用MOSFET和IGBT,可以到几百千赫;而采用了谐振技术的开关电源,则可以达到兆赫以上。
2. 通态压降(正向压降)降低。这可以减少器件损耗,有利于提高速度,减小器件体积。
3. 电流控制能力增大。电流能力的增大和速度的提高是一对矛盾,目前最大电流控制能力,特别是在电力设备方面,还没有器件能完全替代可控硅。
4. 额定电压:耐压高。耐压和电流都是体现驱动能力的重要参数,特别对电力系统,这显得非常重要。
5. 温度与功耗。这是一个综合性的参数,它制约了电流能力、开关速度等能力的提高。目前有两个方向解决这个问题,一是继续提高功率器件的品质,二是改进控制技术来降低器件功耗,比如谐振式开关电源。
总体来讲,从耐压、电流能力看,可控硅目前仍然是最高的,在某些特定场合,仍然要使用大电流、高耐压的可控硅。但一般的工业自动化场合,功率电子器件已越来越多地使用MOSFET和IGBT,特别是IGBT获得了更多的使用,开始全面取代可控硅来做为新型的功率控制器件。

第二节:功率电子器件概览
一. 整流二极管:
二极管是功率电子系统中不可或缺的器件,用于整流、续流等。目前比较多地使用如下三种选择:
1. 高效快速恢复二极管。压降0.8-1.2V,适合小功率,12V左右电源。
2. 高效超快速二极管。0.8-1.2V,适合小功率,12V左右电源。
3. 肖特基势垒整流二极管SBD。0.4V,适合5V等低压电源。缺点是其电阻和耐压的平方成正比,所以耐压低(200V以下),反向漏电流较大,易热击穿。但速度比较快,通态压降低。
目前SBD的研究前沿,已经超过1万伏。
二.大功率晶体管GTR
分为:
单管形式。电流系数:10-30。
双管形式——达林顿管。电流倍数:100-1000。饱和压降大,速度慢。下图虚线部分即是达林顿管。

图1-1:达林顿管应用
实际比较常用的是达林顿模块,它把GTR、续流二极管、辅助电路做到一个模块内。在较早期的功率电子设备中,比较多地使用了这种器件。图1-2是这种器件的内部典型结构。

`
图1-2:达林顿模块电路典型结构
两个二极管左侧是加速二极管,右侧为续流二极管。加速二极管的原理是引进了电流串联正反馈,达到加速的目的。
这种器件的制造水平是1800V/800A/2KHz、600V/3A/100KHz左右(参考)。
三. 可控硅SCR
可控硅在大电流、高耐压场合还是必须的,但在常规工业控制的低压、中小电流控制中,已逐步被新型器件取代。
目前的研制水平在12KV/8000A左右(参考)。
由于可控硅换流电路复杂,逐步开发了门极关断晶闸管GTO。制造水平达到8KV/8KA,频率为1KHz左右。
无论是SCR还是GTO,控制电路都过于复杂,特别是需要庞大的吸收电路。而且,速度低,因此限制了它的应用范围拓宽。
集成门极换流晶闸管IGCT和MOS关断晶闸管之类的器件在控制门极前使用了MOS栅,从而达到硬关断能力。
四. 功率MOSFET
又叫功率场效应管或者功率场控晶体管。
其特点是驱动功率小,速度高,安全工作区宽。但高压时,导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。
适合低压100V以下,是比较理想的器件。
目前的研制水平在1000V/65A左右(参考)。商业化的产品达到60V/200A/2MHz、500V/50A/100KHz。是目前速度最快的功率器件。
五. IGBT
又叫绝缘栅双极型晶体管。
这种器件的特点是集MOSFET与GTR的优点于一身。输入阻抗高,速度快,热稳定性好。通态电压低,耐压高,电流大。
目前这种器件的两个方向:一是朝大功率,二是朝高速度发展。大功率IGBT模块达到1200-1800A/1800-3300V的水平(参考)。速度在中等电压区域(370-600V),可达到150-180KHz。
它的电流密度比MOSFET大,芯片面积只有MOSFET的40%。但速度比MOSFET低。

尽管电力电子器件发展过程远比我们现在描述的复杂,但是MOSFET和IGBT,特别是IGBT已经成为现代功率电子器件的主流。因此,我们下面的重点也是这两种器件。

第三节:功率场效应管MOSFET
功率场效应管又叫功率场控晶体管。
一.原理:
半导体结构分析略。本讲义附加了相关资料,供感兴趣的同事可以查阅。
实际上,功率场效应管也分结型、绝缘栅型。但通常指后者中的MOS管,即MOSFET(Metal Oxide Semiconctor Field Effect Transistor)。
它又分为N沟道、P沟道两种。器件符号如下:

N沟道 P沟道
图1-3:MOSFET的图形符号
MOS器件的电极分别为栅极G、漏极D、源极S。
和普通MOS管一样,它也有:
耗尽型:栅极电压为零时,即存在导电沟道。无论VGS正负都起控制作用。
增强型:需要正偏置栅极电压,才生成导电沟道。达到饱和前,VGS正偏越大,IDS越大。
一般使用的功率MOSFET多数是N沟道增强型。而且不同于一般小功率MOS管的横向导电结构,使用了垂直导电结构,从而提高了耐压、电流能力,因此又叫VMOSFET。
二.特点:
这种器件的特点是输入绝缘电阻大(1万兆欧以上),栅极电流基本为零。
驱动功率小,速度高,安全工作区宽。但高压时,导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。
适合低压100V以下,是比较理想的器件。
目前的研制水平在1000V/65A左右(参考)。
其速度可以达到几百KHz,使用谐振技术可以达到兆级。
三.参数与器件特性:
无载流子注入,速度取决于器件的电容充放电时间,与工作温度关系不大,故热稳定性好。
(1) 转移特性:
ID随UGS变化的曲线,成为转移特性。从下图可以看到,随着UGS的上升,跨导将越来越高。

图1-4:MOSFET的转移特性
(2) 输出特性(漏极特性):
输出特性反应了漏极电流随VDS变化的规律。
这个特性和VGS又有关联。下图反映了这种规律。
图中,爬坡段是非饱和区,水平段为饱和区,靠近横轴附近为截止区,这点和GTR有区别。

图1-5:MOSFET的输出特性
VGS=0时的饱和电流称为饱和漏电流IDSS。
(3)通态电阻Ron:
通态电阻是器件的一个重要参数,决定了电路输出电压幅度和损耗。
该参数随温度上升线性增加。而且VGS增加,通态电阻减小。
(4)跨导:
MOSFET的增益特性称为跨导。定义为:
Gfs=ΔID/ΔVGS
显然,这个数值越大越好,它反映了管子的栅极控制能力。
(5)栅极阈值电压
栅极阈值电压VGS是指开始有规定的漏极电流(1mA)时的最低栅极电压。它具有负温度系数,结温每增加45度,阈值电压下降10%。
(6)电容
MOSFET的一个明显特点是三个极间存在比较明显的寄生电容,这些电容对开关速度有一定影响。偏置电压高时,电容效应也加大,因此对高压电子系统会有一定影响。
有些资料给出栅极电荷特性图,可以用于估算电容的影响。以栅源极为例,其特性如下:
可以看到:器件开通延迟时间内,电荷积聚较慢。随着电压增加,电荷快速上升,对应着管子开通时间。最后,当电压增加到一定程度后,电荷增加再次变慢,此时管子已经导通。

图1-6:栅极电荷特性
(8)正向偏置安全工作区及主要参数
MOSFET和双极型晶体管一样,也有它的安全工作区。不同的是,它的安全工作区是由四根线围成的。
最大漏极电流IDM:这个参数反应了器件的电流驱动能力。
最大漏源极电压VDSM:它由器件的反向击穿电压决定。
最大漏极功耗PDM:它由管子允许的温升决定。
漏源通态电阻Ron:这是MOSFET必须考虑的一个参数,通态电阻过高,会影响输出效率,增加损耗。所以,要根据使用要求加以限制。

图1-7:正向偏置安全工作区

第四节:绝缘栅双极晶体管IGBT
又叫绝缘栅双极型晶体管。
一.原理:
半导体结构分析略。本讲义附加了相关资料,供感兴趣的同事可以查阅。
该器件符号如下:

N沟道 P沟道
图1-8:IGBT的图形符号
注意,它的三个电极分别为门极G、集电极C、发射极E。

图1-9:IGBT的等效电路图。
上面给出了该器件的等效电路图。实际上,它相当于把MOS管和达林顿晶体管做到了一起。因而同时具备了MOS管、GTR的优点。
二.特点:
这种器件的特点是集MOSFET与GTR的优点于一身。输入阻抗高,速度快,热稳定性好。通态电压低,耐压高,电流大。
它的电流密度比MOSFET大,芯片面积只有MOSFET的40%。但速度比MOSFET略低。
大功率IGBT模块达到1200-1800A/1800-3300V的水平(参考)。速度在中等电压区域(370-600V),可达到150-180KHz。
三.参数与特性:
(1)转移特性

图1-10:IGBT的转移特性
这个特性和MOSFET极其类似,反映了管子的控制能力。
(2)输出特性

图1-11:IGBT的输出特性
它的三个区分别为:
靠近横轴:正向阻断区,管子处于截止状态。
爬坡区:饱和区,随着负载电流Ic变化,UCE基本不变,即所谓饱和状态。
水平段:有源区。
(3)通态电压Von:

图1-12:IGBT通态电压和MOSFET比较
所谓通态电压,是指IGBT进入导通状态的管压降VDS,这个电压随VGS上升而下降。
由上图可以看到,IGBT通态电压在电流比较大时,Von要小于MOSFET。
MOSFET的Von为正温度系数,IGBT小电流为负温度系数,大电流范围内为正温度系数。
(4)开关损耗:
常温下,IGBT和MOSFET的关断损耗差不多。MOSFET开关损耗与温度关系不大,但IGBT每增加100度,损耗增加2倍。
开通损耗IGBT平均比MOSFET略小,而且二者都对温度比较敏感,且呈正温度系数。
两种器件的开关损耗和电流相关,电流越大,损耗越高。
(5)安全工作区与主要参数ICM、UCEM、PCM:
IGBT的安全工作区是由电流ICM、电压UCEM、功耗PCM包围的区域。

图1-13:IGBT的功耗特性
最大集射极间电压UCEM:取决于反向击穿电压的大小。
最大集电极功耗PCM:取决于允许结温。
最大集电极电流ICM:则受元件擎住效应限制。
所谓擎住效应问题:由于IGBT存在一个寄生的晶体管,当IC大到一定程度,寄生晶体管导通,栅极失去控制作用。此时,漏电流增大,造成功耗急剧增加,器件损坏。
安全工作区随着开关速度增加将减小。
(6)栅极偏置电压与电阻
IGBT特性主要受栅极偏置控制,而且受浪涌电压影响。其di/dt明显和栅极偏置电压、电阻Rg相关,电压越高,di/dt越大,电阻越大,di/dt越小。
而且,栅极电压和短路损坏时间关系也很大,栅极偏置电压越高,短路损坏时间越短。

第二部分:开关电源基础

第一节:开关电源的基本控制原理

一.开关电源的控制结构:
一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。
如果细致划分,它包括:输入滤波、输入整流、开关电路、采样、基准电源、比较放大、震荡器、V/F转换、基极驱动、输出整流、输出滤波电路等。
实际的开关电源还要有保护电路、功率因素校正电路、同步整流驱动电路及其它一些辅助电路等。
下面是一个典型的开关电源原理框图,掌握它对我们理解开关电源有重要意义。

图2-1:开关电源的基本结构框图
根据控制类型不同,PM(脉冲调制)电路可能有多种形式。这里是典型的PFM结构。
二.开关电源的构成原理:
(一)输入电路:
线性滤波电路、浪涌电流抑制电路、整流电路。
作用:把输入电网交流电源转化为符合要求的开关电源直流输入电源。
1.线性滤波电路:
抑制谐波和噪声。
2.浪涌滤波电路:
抑制来自电网的浪涌电流。
3.整流电路:
把交流变为直流。
有电容输入型、扼流圈输入型两种,开关电源多数为前者。
(二).变换电路:
含开关电路、输出隔离(变压器)电路等,是开关电源电源变换的主通道,完成对带有功率的电源波形进行斩波调制和输出。
这一级的开关功率管是其核心器件。
1.开关电路
驱动方式:自激式、他激式。
变换电路:隔离型、非隔离型、谐振型。
功率器件:最常用的有GTR、MOSFET、IGBT。
调制方式:PWM、PFM、混合型三种。PWM最常用。
2.变压器输出
分无抽头、带抽头。半波整流、倍流整流时,无须抽头,全波时必须有抽头。
(三).控制电路:
向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。
基准电路:提供电压基准。如并联型基准LM358、AD589,串联型基准AD581、REF192等。
采样电路:采取输出电压的全部或部分。
比较放大:把采样信号和基准信号比较,产生误差信号,用于控制电源PM电路。
V/F变换:把误差电压信号转换为频率信号。
振荡器:产生高频振荡波。
基极驱动电路:把调制后的振荡信号转换成合适的控制信号,驱动开关管的基极。
(四).输出电路:
整流、滤波。
把输出电压整流成脉动直流,并平滑成低纹波直流电压。输出整流技术现在又有半波、全波、恒功率、倍流、同步等整流方式。
第二节:各类拓补结构电源分析
一.非隔离型开关变换器
(一).降压变换器
Buck电路:降压斩波器,入出极性相同。
由于稳态时,电感充放电伏秒积相等,因此:
(Ui-Uo)*ton=Uo*toff,
Ui*ton-Uo*ton=Uo*toff,
Ui*ton=Uo(ton+toff),
Uo/Ui=ton/(ton+toff)= Δ
即,输入输出电压关系为:
Uo/Ui=Δ(占空比)

图2-2:Buck电路拓补结构
在开关管S通时,输入电源通过L平波和C滤波后向负载端提供电流;当S关断后,L通过二极管续流,保持负载电流连续。输出电压因为占空比作用,不会超过输入电源电压。
(二).升压变换器
Boost电路:升压斩波器,入出极性相同。
利用同样的方法,根据稳态时电感L的充放电伏秒积相等的原理,可以推导出电压关系:
Uo/Ui=1/(1-Δ)

图2-3:Boost电路拓补结构
这个电路的开关管和负载构成并联。在S通时,电流通过L平波,
电源对L充电。当S断时,L向负载及电源放电,输出电压将是输入电压Ui+UL,因而有升压作用。

E. 如何通过电源(我用的是高压脉冲电源)参数来判断是否有等离子体产生

如果难以观察到放电发光,此时即使有放电,放电电流也很小。在脉冲放电条件下,位移电流(电容的充放电电流,即使没有放电,该电流也很大)又远大于放电传导电流(电子、离子运动组成)。可以尝试的方法,用宽频高存储数字示波器记录脉冲电压、电流,在增加电压时注意观察、分析电流波形是否有小毛刺起伏。