当前位置:首页 » 论文设计 » 土木工程道路方向毕业设计摘要
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

土木工程道路方向毕业设计摘要

发布时间: 2021-03-23 06:08:45

① 土木工程道桥方向毕业设计

土木工程道桥方向
这个您到底几号 要上交的呢 ?
上交后可以的

② 求个土木工程路桥方向毕设论文3000字左右中英互译

城市路桥工程项目后评价指标体系研究
【摘要】随着我国城市化进程的加快,城市路桥工程项目取得了长足发展。而在路桥工程项目建设发挥信息反馈功能的城市路桥工程项目后评价,它已经成为提高投资效益和管理决策水平的重要手段,并日益受到重视。我国20世纪80年代开始工程项目后评价研究,已经取得了一定研究成果,但是工程项目后评价理论的研究主要侧重于路桥工程的过程和财务效益方面,而忽视项目的社会经济和环境影响方面的研究,致使后评价的内容及指标体系不完整。其主要原因有两点:一、国内相关的管理部门过于重视可行性研究报告的工程项目前评价,没有意识到路桥工程项目后评价的重要性和意义;二、路桥工程项目是一项复杂的系统工程,具有公益性、共享性的公共物品特点,后评价需要大量的数据和资料,并且效益很难量化,造成评价内容单一、很多指标操作性不强等问题。文章在总结前人研究基础上,针对城市路桥工程项目后评价指标研究的不足,构建一套科学完整的城市路桥工程项目后评价指标体系。首先,文章对国内外路桥工程项目后评价研究现状进行了总结,并进行相应的综述评论;其次,对城市路桥工程项目后评价的基本理论进行阐述,为之后的研究做了理论铺垫;然后,总结了国内外工程项目后评价内容及指标的发展演变,并分析了现行的城市路桥工程项目后评价内容及指标的不足,为构建科学的城市路桥工程项目后评价指标体系奠定基础;接着,遵循一定的指标设置原则的前提,选择一些具有代表性、科学性、可操作性的指标,从项目的目标、过程、运行效益、社会影响、经济影响、环境影响、目标持续性七个方面,构建一套科学完整的城市路桥工程项目后评价指标体系;最后,总结了城市路桥工程项目后评价指标体系研究成果,同时指出在研究中的一些不足,并对未来尚待进一步研究的问题进行展望。
【关键词】城市路桥工程项目; 后评价指标体系; 后评价

③ 求一篇土木工程毕业设计摘要(框架结构),要类似这样的 字数不用很多 300字以内

其实摘要还是蛮容易写的吧,我建议你将摘要放到最后才写,只要你写完了整个论文,就很容易些摘要了,摘要一般就400字左右,很容易筹字数的

④ 土木工程毕业设计摘要翻译

得一会啊,我给你翻译

⑤ 急求土木工程道路方向的毕业设计外文翻译,最好有中文译文。

这是当年毕业时我的翻译,因为原文有图表等原文也超过10000字,没法在这里发,如需要原文(pdf版及word版)及全部翻译(5000字,中文),请留下邮箱。

摘要部分的翻译:

各种断面形状钢管混凝土的单轴应力应变关系
K.A.S. Susantha , Hanbin Ge, Tsutomu Usami*

土木工程学院,名古屋大学, Chikusa-ku ,名古屋 464-8603, 日本
收讫于2000年5月31日 ; 正式校定于2000年12月19日; 被认可于2001年2月14日
¬¬
摘要
一种预测受三轴压应力混凝土的完全应力-应变曲线的方法被提出,这种三轴压应力是由环形、箱形和八角形的钢管混凝土中的限制作用导致的轴向荷载加测向压力所产生的。有效的经验公式被用来确定施加于环形钢管混凝土柱内混凝土的侧向压力。FEM(有限元)分析法和混凝土-钢箍交互作用模型已被用来估计施加于箱形和八角形柱的混凝土侧向压力。接着,进行了广泛的参数研究,旨在提出一个经验公式,确定不同的筒材料和结构特性下的最大平均侧向压力。如此计算出的侧向压力通过一个著名经验公式确定出侧向受限混凝土强度。对于高峰之后的应力-应变关系的确定,使用了有效的试验结果。基于这些测试结果,和近似表达式来推算下降段的斜度和各种断面形状的筒内侧向受限混凝土在确认的混凝土强度下的应变。推算出的混凝土强度和后峰值性能在允许的界限内与测试结果吻合得非常好。所提出的模型可用于包括梁柱构件在内的纤维分析,以确定抗震结构设计中混凝土填充钢柱筒的极限状态的推算标准。 •版权所有2001 Elsevier科学技术有限公司。
关键词: 钢管混凝土;限制;混凝土强度;延性;应力应变关系;纤维分析

Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes

K.A.S. Susantha, Hanbin Ge, Tsutomu Usami *

Department of Civil Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
Received 31 May 2000; received in revised form 19 December 2000; accepted 14 February 2001

Abstract
A method is presented to predict the complete stress–strain curve of concrete subjected to triaxial compressive stresses caused by axial load plus lateral pressure e to the confinement action in circular, box and octagonal shaped concrete-filled steel tubes. Available empirical formulas are adopted to determine the lateral pressure exerted on concrete in circular concrete-filled steel columns. To evaluate the lateral pressure exerted on the concrete in box and octagonal shaped columns, FEM analysis is adopted with the help of a concrete–steel interaction model. Subsequently, an extensive parametric study is concted to propose an empirical
equation for the maximum average lateral pressure, which depends on the material and geometric properties of the columns. Lateral pressure so calculated is correlated to confined concrete strength through a well known empirical formula. For determination of the post-peak stress–strain relation, available experimental results are used. Based on the test results, approximated expressions to predict the slope of the descending branch and the strain at sustained concrete strength are derived for the confined concrete in columns having each type of sectional shapes. The predicted concrete strength and post-peak behavior are found to exhibit good
agreement with the test results within the accepted limits. The proposed model is intended to be used in fiber analysis involving beam–column elements in order to establish an ultimate state prediction criterion for concrete-filled steel columns designed as earthquake resisting structures. •2001 Elsevier Science Ltd. All rights reserved.

Keywords: Concrete-filled tubes; Confinement; Concrete strength; Ductility; Stress–strain relation; Fiber analysis

1. Introction

Concrete-filled steel tubes (CFT) are becoming increasingly popular in recent decades e to their excellent earthquake resisting characteristics such as high ctility and improved strength. As a result, numerous experimental investigations have been carried out in recent years to examine the overall performance of CFT columns [1–11]. Although the behavior of CFT columns has been extensively examined, the concrete core confinement is not yet well understood. Many of the previous research works have been mainly focused on investigating the performance of CFT columns with various limitations. The main variables subjected to such limitations were the concrete strength, plate width-to- thickness (or radius-to-thickness) ratios and shapes of the sections. Steel strength, column slenderness ratio and rate of loading were also additionally considered. It is understandable that examination of the effects of all the above factors on performances of CFTs in a wider range, exclusively on experimental manner, is difficult and costly. This can be overcome by following a suitable numerical theoretical approach which is capable of handling many experimentally unmanageable situations. At present, finite element analysis (FEM) is considered as the most powerful and accurate tool to simulate the actual behavior of structures. The accurate constitutive relationships for materials are essential for reliable results when such analysis proceres are involved. For example, CFT behavior may well be investigated through a suitable FEM analysis procere, provided that appropriate steel and concrete material models are available. One of the simplest yet powerful techniques for the examination of CFTs is fiber analysis. In this procere the cross section is discretized into many small regions where a uniaxial constitutive relationship of either concrete or steel is assigned. This type of analysis can be employed to predict the load–displacement relationships of CFT columns designed as earthquake resisting structures. The accuracy involved with the fiber analysis is found to be quite satisfactory with respect to the practical design purposes.

At present, an accurate stress–strain relationship for steel, which is readily applicable in the fiber analysis, is currently available [12]. However, in the case of concrete, only a few models that are suited for such analysis can be found [3,8,9]. Among them, in Tomii and Sakino’s model [3], which is applicable to square shaped columns, the strength improvement e to confinement has been neglected. Tang et al. [8] developed a model for circular tubes by taking into account the effect of geometry and material properties on strength enhancement as well as the post-peak behavior. Watanabe et al. [9] concted model tests to determine a stress–strain relationship for confined concrete and subsequently proposed a method to analyze the ultimate behavior of concrete-filled box columns considering local buckling of component plates and initial imperfections. Among the other recent investigations, the work done by Schneider [10] investigated the effect of steel tube shape and wall thickness on the ultimate strength of the composite columns. El-Tawil and Deierlein [11] reviewed and evaluated the concrete encased composite design provisions of the American Concrete Institute Code (ACI 318) [13], the AISC-LRFD Specifications [14] and the AISC Seismic Provisions [15], based on fiber section analyses considering the inelastic behavior of steel and concrete.

In this study, an analytical approach based on the existing experimental results is attempted to determine a complete uniaxial stress–strain law for confined concrete in relatively thick-walled CFT columns. The primary objective of the proposed stress–strain model is its application in fiber analysis to investigate the inelastic behavior of CFT columns in compression or combined compression and bending. Such analyses are useful in establishing rational strength and ctility prediction proceres of seismic resisting structures. Three types of sectional shapes such as circular, box and octagonal are considered. A concrete–steel interaction model is employed to estimate the lateral pressure on concrete. Then, the maximum lateral pressure is correlated to the strength of confined concrete through an empirical formula. A method based on the results of fiber analysis using assumed concrete models is adopted to calibrate the post-peak behavior of the proposed model. Finally, the complete axial load–average axial strain curves obtained through the fiber analysis using the newly proposed material model are compared with the test results. It should be noted that a similar type of interaction model as used in this study has been adopted by Nishiyama et al. [16], which has been combined with a so called peak load condition line in order to determine the maximum lateral pressure on reinforced concrete columns.

Meanwhile, previous researches [17,18] indicate that the stress–strain relationship of concrete under compressive load histories proces an envelope curve identical to the stress–strain curve obtained under monotonic loading. Therefore, in further studies, the proposed confined uniaxial stress–strain law can be extended to a cyclic stress–strain relationship of confined concrete by including a suitable unloading/reloading stress–strain rule.

⑥ 小弟跪求一份土木工程道路方向本科毕业设计全过程资料

实践考核本科与普通本科相比较的优势:普通本科学生必须按部就班的读完回四年的课程才可以考答研,而实践考核本科的学生就不同了,可以将本科课程提前考完就可以继续考研,这样实践考核本科类学生即节省了时间,又减轻了家里的负担,灵活性较大

⑦ 土木工程毕业设计目录及摘要

摘要:

本次毕业设计是一幢行政办公楼,主要进行的是结构设计部分。结构设计简而言之就是用结构语言来表达工程师所要表达的东西。

结构语言就是结构师从建筑及其它专业图纸中所提炼简化出来的结构元素,包括基础、墙、柱、梁、板、楼梯、大样细部图等等。然后用这些结构元素来构成建筑物或构筑物的结构体系,包括竖向和水平的承重及抗力体系,再把各种情况产生的荷载以最简洁的方式传递至基础。

结构设计的阶段大体可以分为三个阶段:

一、结构方案阶段:根据建筑的重要性,建筑所在地的抗震设防烈度,工程地质勘查报告,建筑场地的类别及建筑的高度和层数来确定建筑的结构形式,本工程采用的是框架结构。

二、结构计算阶段:包括荷载计算、内力计算和构件计算。

三、施工图设计阶段:根据上述计算结果,来最终确定构件布置和构件配筋以及根据规范的要求来确定结构构件的构造措施。

(7)土木工程道路方向毕业设计摘要扩展阅读:

大学生在老师指导下,就选定的课题进行设计和研究,在经过计算、绘图、建模等环节后,通过答辩才能毕业。如今,不少毕业生将毕设外包,并非一句简单的诚信缺失就能解释。

据媒体调查,与文科本科毕业生论文抄袭、偷工减料相比,理工科学生的网购毕业设计,“不会做”是最主要的原因。因其有较强的技术属性,绝非短期突击就可完成,要求的是平日里的积累和实操,不懂、不会就真的做不出来。平时不努力用功,毕业答辩迫在眉睫时,在网络上找人代做就成了“不得已”的选择。

究其原因,学生懒惰、不诚信是一方面,高校“严进宽出”也让大学生的专业学习缺乏紧迫感和危机感。一些学生在大学里过着“及格万岁”的日子,而不少大学老师又天然地认为“大学需要学生自主学习,学不学跟老师没关系”,进而教完课就走人,将工作重点放在科研上。教学关系很松弛,学习效果也在一定程度上打了折扣。

⑧ 可以翻译一下土木工程方向毕业设计的中英文摘要吗 ​

In yichang of hubei, this route is a main road, route design specifications for: roadbed width of 50 meters, of which the lanes 22 meters, 6 meters, the median is set 3 meters on both sides of the separation zone, non-motor vehicle driveways 5 meters, sidewalk 3 meters. Design speed of 50 km/h, route length 2000 meters, the starting point of the pile number K0 + 000.00, the finish pile number for K2 + 000.
This design mainly has carried on the roads of flat, vertical and horizontal combination and design; Vertical and channelized intersection design; Roadbed design; Pavement structure design; The road of rainwater drainage design. In the design to the design of the intersection, pavement structure design and road rainwater drainage design as the key point. Throughout the design process, the municipal road design software, using the hongye hongye municipal pipeline design software and Auto CAD auxiliary design.