当前位置:首页 » 论文设计 » 昆虫毕业论文
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

昆虫毕业论文

发布时间: 2021-03-22 12:35:41

『壹』 有关蜜蜂的论文题目

[1]. 徐卫滨, 无选择策略的改进蜜蜂群算法. 太原科技大学学报, 2011(05): 第343-347页.
[2]. 陈璇与胡福良, 调控蜜蜂采粉行为的遗传因素. 中国蜂业, 2010(11): 第13-15页.
[3]. 汪明明等, 蜜蜂工蜂卵巢发育的影响因素. 中国蜂业, 2010(10): 第5-7页.
[4]. 曾鸣等, 基于混沌量子蜜蜂算法的机会约束输电规划. 电力系统保护与控制, 2010(22): 第1-7+14页.
[5]. 安建东与陈文锋, 全球农作物蜜蜂授粉概况. 中国农学通报, 2011(01): 第374-382页.
[6]. 陈璇与胡福良, 雌性蜜蜂级型决定的分子机制. 蜜蜂杂志, 2011(04): 第1-7页.
[7]. 侯春生与张学锋, 生态条件的多样性变化对蜜蜂生存的影响. 生态学报, 2011(17): 第5061-5070页.
[8]. 陶德双等, 中华蜜蜂为石榴授粉效果研究. 蜜蜂杂志, 2010(03): 第10-11页.
[9]. 李兆英与奚耕思, 中华蜜蜂工蜂复眼的胚后发育研究. 陕西师范大学学报(自然科学版), 2010(03): 第60-64页.
[10]. 严盈, 彭露与万方浩, 昆虫卵黄原蛋白功能多效性:以蜜蜂为例. 昆虫学报, 2010(03): 第335-348页.
[11]. 周亮等, 蜜蜂囊状幼虫病RT-PCR快速检测方法的初步应用. 蜜蜂杂志, 2010(06): 第9-10页.
[12]. 李兆英, 中华蜜蜂工蜂视叶胚后发育过程中的细胞凋亡. 昆虫知识, 2010(04): 第680-684页.
[13]. 沈登荣等, 蜜蜂作为病原物载体的研究进展. 中国生物防治, 2010(S1): 第118-122页.
[14]. 周亮等, 蜜蜂囊状幼虫病RNA依赖的RNA聚合酶部分基因的克隆和序列分析. 中国畜牧兽医, 2010(11): 第50-52页.
[15]. 郑肇葆, 产生最佳Tuned模板的蜜蜂交配算法. 武汉大学学报(信息科学版), 2009(04): 第387-390+435页.
[16]. 李伟强, 徐建城与殷剑锋, 蜜蜂群优化算法用于训练前馈神经网络. 计算机工程与应用, 2009(24): 第43-45+49页.
[17]. 周丹银等, 蜜蜂为油菜授粉效果初步研究. 蜜蜂杂志, 2010(01): 第3-5页.
[18]. 薛晗等, 空间机器人随机故障容错规划的蜜蜂算法. 信息与控制, 2009(06): 第724-734页.
[19]. 张成翠与曾建潮, 蜜蜂群组决策方法的建模与仿真. 太原科技大学学报, 2009(06): 第452-455页.
[20]. 周婷等, 蜜蜂巢房大小影响狄斯瓦螨的繁殖行为. 昆虫知识, 2006(01): 第89-93页.
[21]. 历延芳, 闫德斌与葛凤晨, 蜜蜂为塑料大棚西瓜和田间西瓜授粉试验报告. 蜜蜂杂志, 2006(01): 第6-7页.
[22]. 王成菊等, 阿维菌素及其混配制剂对蜜蜂的安全性评价. 农业环境科学学报, 2006(01): 第229-231页.
[23]. 黄智勇, 蜜蜂全基因组出笼前后. 昆虫知识, 2007(01): 第5-9页.
[24]. 姜双林与李博平, 陇东地区不同生境下蜜蜂的种类及其生态分布. 草业科学, 2007(05): 第89-91页.
[25]. 王志江与魏红福, 蜜蜂α-葡萄糖苷酶的分离纯化及其酶学性质研究. 食品科学, 2007(07): 第304-308页.
[26]. 罗阿蓉等, 后基因组时代的蜜蜂QTL研究. 昆虫学报, 2007(09): 第950-956页.
[27]. 何铠光, 刘佩珊与苏鸿基, 台湾蜜蜂的螺旋菌质病研究. 蜜蜂杂志, 2007(S1): 第3-7页.
[28]. 许益鹏等, 蜜蜂囊状幼虫病毒病的Nest-PCR检测. 科技通报, 2007(06): 第824-827页.
[29]. 林小丽等, 农药对蜜蜂的风险评价技术进展. 农药学学报, 2008(04): 第404-409页.
[30]. 刘之光与石巍, 中国甘肃东北部地区东方蜜蜂(Apis cerana)形态学研究. 环境昆虫学报, 2008(02): 第97-102页.

『贰』 昆虫表达毕业论文选题报告

昆虫是如何发声的 昆虫的声音是由特殊的发音器官产生的。下面简单介绍几种昆虫的发声原理—— 在各种鸣虫中,蟋蟀的鸣声清脆好听。这个方面的我可以写的

『叁』 法国法布尔他对昆虫进行了长达几年的研究

法布尔成年累月地观察昆虫,研究昆虫。他在昆虫学研究土蜂,用了两年;研究一种蓝黑色的甲虫——地胆,花了25年;研究遂蜂,前后经过30年;研究蜣螂,用了40年!

『肆』 毕业论文求助

首先听听老师的指导意见.
其次多掌握资料,去图书馆数据库下载,还有网上搜索一下目前有关这方面的研究热点和动态,
阅读资料后,你自然就知道要写什么了.

『伍』 《昆虫记 》昆虫的资料

世界上最长的昆虫—— 新加坡竹节虫是世界上最长的昆虫,其细长的身体长达27厘米,倘若在安静的状态下充分舒展身体的话,身长可超过40厘米。竹节虫所具有的保护形和保护色,使它在灌林丛中栖息时以假乱真。
世界上最长的甲虫—— 亚马逊巨天牛和大牙天牛是世界上最长的甲虫。它们身长18厘米。大牙天牛的角(长颚)是专为切割树枝所设计的,当它用锐利的角钩住枝条后就绕着树枝作360°的旋转,直至把树枝锯断为止。
世界上最大的蝶蛾——生长在南美洲的大灰夜蛾身长9厘米,展开双翼有27厘米宽,体色为灰色带有深色斑点,它们都是世界上蝶蛾类中最大的昆虫。
最小的蝴蝶—一在已知的14万多种鳞翅目昆虫中,最小的蝴蝶是发现于南非的一种微型小蝶,两个翅尖之间的长度仅有1.4厘米。
最凶猛的昆虫——螳螂。
对人类健康危害最大的昆虫—一蚊子。
对建筑物危害最大的昆虫—一白蚁。
对农业危害最大的昆虫—一蝗虫。
最重的昆虫—一非洲赤道地区金龟子科的一种甲虫,成年雄性个体的重量可达99.33克。
最小的昆虫—一并列冠军的是膜翅目的一种寄生蜂和缨甲科的一种甲虫,体长都仅有0.02厘米,而该寄生蜂的翅展只有0.1厘米,比某些单细胞原生动物还要小。
最轻的昆虫—一并列第一的是一种雄性的吸血虱和一种寄生蜂,个体都只有0.005毫克重,每盎司(约合28.35克)中大约有570万头虫体之多。该寄生蜂的卵每个重量仅有0.0002毫克,每盎司大约含1亿5千万个卵。
分布最广的昆虫—一弹尾目的弹尾虫,据计算每23厘米深的土壤中有这种跳虫2亿3千万个,合每929平方厘米中至少有5千个。
飞得最快的昆虫—一有一种苍蝇的最高飞行速度可达每小时38.6公里,其瞬间速度竟高达每小时41.8公里。
寿命最长的昆虫—一几丁虫,它的某些种类仅幼虫期就长达30年以上。
鸣声最大的昆虫—一雄性的蝉(知了),它的发生器每分钟可震动 7千4百次,远在400米之外都能听见。
最大的蝗虫群—一1989年观察到的一个最大蝗虫群竟覆盖了810公顷地面,据估算至少包含着大约2500亿个个体,重量高达约55万吨。
翅膀扇动最快的昆虫—一一种摇蚊,每分钟翅膀扇动次数高达近6万2千8百次,肌肉收缩周期可快到1/2218秒。
翅膀扇动最慢的昆虫—一黄凤蝶,每分钟翅膀扇动仅有300次,而大多数蝴蝶的翅膀扇动可达到每分钟460次—636次。
产蜜最多的蜂房—一由一个澳大利亚人1938年创造,一个蜂房中产出蜂蜜的最高记录为249.25公斤。
最大的蜻蜓—一南美洲中部的一种蜻蜓,体长达12厘米,翅展达到19厘米之多。
最大的跳蚤—一1913年从一个海狸颈部采集到的跳蚤标本,长达0.79厘米,相当于一般铅笔的直径尺寸。
跳得最高的跳蚤—一现在已知的跳蚤种类约为1830种,其中的跳高冠军是人蚤,它在1910年创造的记录是:跳远33厘米,跳高19.7厘米。

『陆』 急求毕业论文《多样的昆虫》主题活动方案 里面要有主题由来 主题目标 以及五大领域的

三级提纲拟好发送过去

『柒』 昆虫记里面有哪些昆虫及它们的特点

1、干泥蜂

他们喜欢在潮湿温暖的地方筑巢。他们经常在烟囱里筑巢,那里的温度适合干泥蜂生存,但是干泥蜂的幼崽经常窒息,所以干泥蜂会在宽阔的烟囱里筑巢。

2、萤火虫

只要螺旋的防护墙有一点空隙,就足够它钻空子了。萤火虫那纤细灵巧的工具轻轻一咬,蜗牛当即陷人麻木僵滞状态,接下来便是食蜗牛者不声不响地悄悄下手。但萤火虫操作总是极其谨慎。

它以轻柔的动作处理自己得到的牺牲品,不能使对方有丝毫挛缩反应。因为蜗牛只要作出收缩动作,就会与粘附的物体脱胶,萤火虫可没兴致去搜寻得而复失的猎物。

3、蟋蟀

当选择住的地方时,他们不会选择自然形成的隐藏的地方,因为这些洞不适合。它们都是仓促建造的,没有安全保障。他们通常选择排水条件好、阳光充足的地方,在选择这些地方时,他们必须自己建造。

4、蝈蝈

强壮的脚,大肚子和良好的跳跃。生于原野草丛、矮林和灌木,通常藏在草丛中,或者在植物茎上爬行、栖息和觅食。它主要吃植物的茎、叶、瓜和果实。

5、毛虫

每年三月份的时候,松毛虫会排着整齐的队伍,浩浩荡荡地离家出走了,最前面那只不停地 探头探脑地寻找路径。终于,它们选好了一个风水宝地,开始挖洞了。

毛虫其实是在自掘坟墓——它们把自己埋进土里。松毛虫也是列队虫,它们很笨,做事不动脑子,如果领头的那一只无论 怎么打转和歪歪斜斜的走,后面的也会照它的样子去做。

6、圣甲虫

食粪虫中最大最负盛名的一种。月牙儿状顶壳前沿排着六个细尖的齿,既是挖掘工具,切割工具,也是插举,抛甩粪料中无养分植物纤维的叉子。

而巴还可以当耧耙,把好吃的东西统统搂过来。为后代或自己储备食物的第一步是选料,剔除杂质,收拢成堆,之后清理出一块场地。

7. 蝉

能够很容易的在穴道内爬上爬下,对于它是很重要的,因为当它爬出去到日光下的时候,它必须知道外面的气候如何。所以它要工作好几个星期,甚至一个月,才做成一道坚固的墙壁,适宜于它上下爬行。在隧道的顶端,它留着手指厚的一层土,用以保护并抵御外面空气的变化,直到最后的一霎那。

8. 舍腰蜂

我记得有一次去一家丝厂,在那里我见到过一个舍腰蜂的巢。它把自己的巢建在机房里,并且为自己选择了刚好是在大锅炉的上面的天花板上的一个地方。看来,它真是慧眼独具啊!它为自己选择的这个地点,整个一年,无论寒暑,也无论春夏秋冬的变迁,

很显然,在这些日子里,锅炉里并没有加热,所以,温度当然会随之有所变化的。这个事实很明显地告诉我们,这个小小的动物对温度真是要求很高啊!而且,地点的家和他也是个非常会为自己挑选地点的家伙。

9. 螳螂

但那个可怜的蝗虫移动到螳螂刚好可以碰到它的时候,螳螂就毫不客气,一点儿也不留情地立刻动用它的武器,用它那有力的“掌”重重地击打那个可怜虫,再用那两条锯子用力的把它压紧。于是,那个小俘虏无论怎样顽强抵抗,也无济于事了。像秋风扫落叶一样地对待敌人,是螳螂永不改变的信条。

10、 萤

萤常常要利用一种爬行器——为了弥补它自己腿部,以及足部力量的不足——爬到瓶子的顶部去,先仔细的观察一下蜗牛的动静,然后,做一下判断和选择,寻找可以下钩的地方。然后,就这么迅速地轻轻一咬,就足以使对手失去知觉了。这一切就发生在一瞬间。于是,一点儿也不拖延,萤开始抓紧时间来制造它的美味佳肴——肉粥,以准备作为数日内的食品。

11、 蜘蛛

在六种园蛛中,通常歇在网中央的只有两种,那就是条纹蜘蛛和丝光蜘蛛。它们即使受到烈日的焦灼,也绝不会轻易离开网去阴凉处歇一会儿。至于其他蜘蛛,它们一律不在白天出现。它们自有办法是工作和休息两个互不相误,在离开它们的网不远的地方,有一个隐蔽的场所,是用叶片和线卷成的。白天它们就躲在这里面,静静地,让自己深深地陷入沉思中。

(7)昆虫毕业论文扩展阅读

作者简介

法布尔,全名让·亨利·卡西米尔·法布尔(Jean-Henri CasimirFabre),1823年出生于法国南部普罗旺斯的圣莱昂的一户贫困农民家中,从童年时起,他就表现出对于自然和昆虫的喜爱。长大后曾就读于公立师范院校,毕业后担任中学教师一职。

在任中学教师期间,他一面工作一面勤学苦读,先后取得了数学学士学位、自然科学学士学位和自然科学博士学位。同时,他还利用业余时间观察研究昆虫,发表过出色的论文,得到了达尔文的肯定,被誉为“无与伦比的观察家”。

1875年,法布尔整理20余年资料写成《昆虫记》第一卷。1880年,法布尔用积攒下的钱在南法塞西尼翁村买了一小块地,并风雅地命名为“荒石园”。自此之后,他把大部分时间都消耗在了荒石园内,投注在了观察与研究昆虫上,而记录着他观察结果的《昆虫记》也一卷又一卷地相继问世。

直到1910年,法布尔完成了《昆虫记》第十卷的写作。《昆虫记》在法国自然科学史与文学史上都具重要的地位,雨果称法布尔是“昆虫世界的荷马”,法国文学界也赞誉他为“昆虫世界的维吉尔”。

1915年,法布尔与世长辞。

『捌』 昆虫毒素的概念是专业的 要写论文用 谢谢!

指昆虫产物(分泌物、排泄物、内含物等)或昆虫体本身所具有的有害物质

『玖』 求有关昆虫的英文文献

研究昆虫控制的文章

Athenix and Monsanto Announce Collaboration on Research for Insect Control

RESEARCH TRIANGLE PARK, N.C. and ST. LOUIS, June 20 /PRNewswire-FirstCall/ -- Athenix Corp. and Monsanto Company today announced they have entered into a three-year research collaboration for insect control on a key class of insects that affects a number of Monsanto's major crops of interest. Financial terms of the agreement were not disclosed.
"We are pleased to work with the market leader in crop genetics to bring our technical capabilities to commercialization," said Mike Koziel, chief executive officer for Athenix.

"Working with Monsanto to discover novel genes for controlling insect pests increases options for farmers and allows Athenix to demonstrate the power of its integrated discovery platforms for new biotech traits," said Nick Duck, vice president of research at Athenix.

Athenix will apply its expertise in microbial screening and genomics to facilitate gene discovery intended to help protect crops such as cotton, soybeans and corn against a common class of insects known as Hemipterans. Hemipteran insects include Lygus, a pest of cotton, and stinkbug, a pest of soybean.

"This collaboration will work to offer an essential benefit to our farmer customers by providing insect protection in crops such as corn, cotton and soybeans against the piercing and sucking insects. Insect tolerant crops allow growers to spray less pesticide, making their operations more efficient and at the same time stewarding the environment," said Robert T. Fraley, Ph.D., Monsanto executive vice president and chief technology officer. "We're excited to collaborate with Athenix to help broaden grower's options for insect control."

About Athenix:

Athenix is a leading biotechnology company that develops novel procts and technologies for agricultural and instrial applications, including biofuels and bioconversions. Athenix has established an outstanding intellectual property portfolio and market access ability around enhanced plants, microbes, genes, enzymes, and processes with emphasis on two major markets: 1) novel agricultural traits for growers such as insect resistance, nematode resistance, herbicide tolerance, and their use for the crop proction instry; and 2) the discovery of genes and proteins for use in the sustainable chemical instry with a focus on biofuels like ethanol and other natural procts.

Biological control of locusts

New weapons for old enemies
During the 1988 desert locust plague, swarms crossed the Atlantic from Mauritania to the Caribbean, flying 5 000 kilometres in 10 days.

Scientists were stumped because migrating swarms normally come down to rest every night. But locusts can’t swim, so how could it be?

It turned out that the swarms were coming down at sea – on any ships they could find, but also in the water itself. The first ones in all drowned but their corpses made rafts for the other ones to rest on.

Since the dawn of agriculture more than 10 000 years ago mankind has had to deal with a resourceful and fearless enemy, Schistocerca gregaria, the desert locust. Normally loners, every so often these natives of the deserts from West Africa to India turn into vast, voracious swarms that leave hunger and poverty behind them wherever they go.

Throughout history, farmers and governments have made attempts to repel the bands and swarms of locusts by collecting insects, creating noise, making smoke and burying and burning the insects. But all of this had little effect. With swarms sometimes extending for hundreds of kilometres, and containing billions of indivials, they conquered by sheer force of numbers.

Health concerns

It has long puzzled humans where these animals came from and where they survived. Only in the mid-20th century was it realized that the light brown solitary desert-dwelling insect was the same species as the red and yellow locusts of the plagues. Only when its biology was understood and chemical pesticides and aerial spraying became available a few decades ago, could efforts be made to control the insect. But large-scale pesticide use also raised real concerns for human health and the environment.

On the seventh-floor Emergency Centre for Locust Operations (ECLO) at FAO Headquarters in Rome, Keith Cressman, FAO's locust forecaster, checks current environmental conditions and locust population data from the three computer screens on his desk. The last big locust upsurge ended early in 2005 and the current alert level is green or calm.

The experts at FAO’s ECLO are readying to fight the next round in the age-old battle against locusts – wherever and whenever that may be.

“The next time,” says Cressman, “we’ll fight with new tools”.

New bio-control agents

Recent advances in biological control research, coupled with improved surveillance and intelligence, could make a big difference when the next round in the battle is fought. Such procts could make it possible to sharply rece the amount of chemical pesticides used.

One promising avenue is research currently under way at the International Centre for Insect Physiology and Ecology (ICIPE) in Nairobi. An ICIPE team headed by a Zanzibar-born chemical ecologist, Ahmed Hassanali, has identified and synthesized a specific locust pheromone, or chemical signal, that can be used against young locusts with devastating effect.

Phenylacetonitrile, or PAN for short, normally governs swarming behaviour in alt males who also use it to warn other males to leave them in peace while they mate. But, Hassanali found it has startlingly different results on juvenile wingless locusts, known as hoppers.

Hopper bands

Just as alt locusts form swarms, hoppers will, given the right conditions, stop behaving as indivials and line up in marauding bands up to 5 kilometres wide. They are only slightly less voracious than alts, who eat their own weight of food every day.

In three separate field trials – the most recent in Sudan last year – Hassanali’s team showed that even minute doses of PAN could stop hopper bands dead in their tracks and make them break ranks.

PAN caused the insects to resume solitary behaviour. Confused and disoriented, some lost their appetite altogether, while others turned cannibal and ate one other. Any survivors were easy prey for predators.

What makes PAN particularly attractive is that the dose needed is only a fraction – typically less than 10 millilitres per hectare – of the quantities of chemical or biological pesticides. This translates into substantially lower costs – 50 cents per hectare as opposed to US$12 for chemical pesticides and $15-20 for other bio-control agents.

That is clearly a major consideration in the countries in the front line – many of them among the world’s poorest.

Green Muscle

A different, but also highly effective biological approach is Green Muscle ®, a bio-pesticide developed by the International Institute for Tropical Agriculture’s biological control centre in Cotonou, Benin, and manufactured in South Africa.

Green Muscle ® contains spores of the naturally occurring fungus Metarhizium anisopliae var. acrim, which germinate on the skin of locusts and penetrate through their exoskeletons. The fungus then destroys the locust's tissues from the inside. This is definitely not good news for locusts, but the fungus has no effect on other life forms.

A proct similar to Green Muscle ® is already successfully used in Australia, but the latter's introction in Africa and Asia is being slowed by several factors. These include a need for further large-scale trials, official approval of the proct in several countries, and a relatively short shelf-life in its normal ready-to-spray liquid form. One drawback is that it takes days to kill the locusts. It is also relatively expensive and large-scale proction would need to be organized.

A solution would be to store the proct in powder form and dilute it just before use. Hassanali’s team has also shown that, if used in combination with a small amount of PAN, only a quarter of the normal dose of Green Muscle ® is needed.

Insect Growth Regulators

Also being readied for the modern locust fighter’s armoury is a class of procts known as Insect Growth Regulators, or IGRs, which influence the ability of hoppers to moult and grow properly. They have no direct toxic effects on vertebrates.

IGRs are effective for several weeks after application and can be used in so-called barrier treatments. In this method only narrow swathes of the proct are applied, perpendicular to the direction of the marching hopper bands. Only 10 percent of the amount used in blanket treatment is needed. After marching over one or two barriers the hoppers absorb enough proct to die while moulting.

As with PAN and Green Muscle ®, however, IGRs need to be aimed at locusts at an early stage in their lives, before they take to the air. That, in turn, requires an advanced level of surveillance and intelligence-gathering to make sure that any locust concentrations are nipped in the bud.

eLocust2

Although back at ECLO Keith Cressman has satellites, computers and mathematical models at his disposal, the weak link in the chain has been the time it takes to get good information from the field.

The mobile ground teams whose job it is to keep tabs on locust populations have to work in some of the world’s remotest, hottest and sometimes (for environmental and security reasons) most hostile places. A week or more might go by before a report from, say, the central Sahara, reached Cressman’s desk. By that time the locusts – “They don’t need visas,” he says – would quite likely have moved to another country or continent altogether.

This will soon change however. Field teams are now being issued with special hand-held devices to record vital locust and environmental data and relay them back to their own headquarters and on to Rome in real time.

Developed by the French Space Agency CNES, the eLocust2 device is able to bounce the information off communications satellites and have the data arrive in the National Locust Control Centre in the affected country a few minutes later, from where they are passed on to Cressman for analysis. In case of unusually heavy hopper concentrations, immediate action can be taken to make sure that the locusts never grow old enough to swarm.

Back to the field

Writing in Science magazine, locust expert Martin Enserink gave the following graphic description of a locust population gone out of control:

“On a beautiful November morning (in Morocco) it’s clear, even from afar, that something’s terribly wrong with the trees around this tiny village. They are covered with a pinkish-red gloss, as if their leaves were changing colour...

"As you get closer, the hue becomes a wriggling mass; a giant cap of insects on every tree, devouring the tiny leaves. Get closer still and you’ll hear a soft drizzle: the steady stream of locust droppings falling to the ground.”

Such nightmare visions, and locust plagues with them, may one day be a thing of the past.