当前位置:首页 » 论文设计 » 220kv输电线路毕业设计
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

220kv输电线路毕业设计

发布时间: 2021-03-16 11:18:58

❶ 求220kV输电线路跨越铁路的施工方案,谢谢!!

这方案你可以去 鲁文建筑服务网下载,上面很多关于220kV输电的施工组织设计

重庆某220kv变电站工程施工组织设计
220KV送变电所工程施工组织设计
某220kv变电站110kv电隆线间隔扩建工程施工组织设
湖南输变电公司新建220kv输电线路工程施工组织设计
河北某220kv变电站土建工程施工组织设计
220kV忠县石马输变电新建工程挡土墙(护坡)施工方案
山西关铝配电装置安装工程220kV 配电装置施工方案
莆美~东山220kV输变电线路工程施工组织设计

这些就是在里面找到的

❷ 35kv输电线路毕业设计引用怎么写

35kv输电线路毕业设计
电力作为一个国家的经济命脉不论是对于国家的各种经济建设还是对于普通老百姓

的生活都起着至关重要的作用,
而输电线路则是电力不可缺少的一个组成部分。
目前我国
大部分地区都面临着缺电这一问题,
国家正在加紧电网建设,
许多地方新建和改建了一批
输电线路,
输电线路的规划设计也就相当重要了,
输电线路工程设计是电力建设的重要组
成部分,同时也对输电线路正常运行起着决定性作用。

本文针对一条具体的输电线路——
35kV
三梅输电线路进行了设计,其中包括比载、
临界档距、应力弧垂、安装弧垂的计算,排定杆塔位置,进行各种杆塔定位校验,进行防
振设计,选择接地装置,完成绝缘子串的组装图、杆塔地基基础设计、杆塔组立施工设计
等,涵盖了输电线路的设计、施工等方面的内容。

❸ 输电线路论文

摘要:架空输电线路防雷是电力系统防雷工作的重要方面,常用的防雷改进措施有:架设避雷线、安装避雷针、加强线路绝缘、采用差绝缘方式、装设藕合地线或辆合地理线、升高避雷线减小保护角、装设消雷器及预放电棒与负角保护针、使用接地降阻剂等。解决线路的雷害问题,要从实际出发因地制宜,综合治理。
关键词:接地电阻、差绝缘、耦合地线、避雷线、消雷器
架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。
架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即:
1 防直击,就是使输电线路不受直击雷。
2 防闪络,就是使输电线路受雷后绝缘不发生闪络。
3 防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。
4 防停电,就是使输电线路建立工频电弧后不中断电力供应。
架空输电线路防雷的具体措施
现对生产运行部门常用的架空输电线路防雷改进措施简述如下:
1架设避雷线
架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷直击导线,同时还具有以下作用:
1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;
2)通过对导线的耦合作用可以减小线路绝缘子的电压;
3)对导线的屏蔽作用还可以降低导线上的感应过电压。
通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。因此,110kV及以上电压等级的输电线路都应全线架设避雷线。
同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°左右。
2安装避雷针
安装避雷针也是架空输电线路常用的一种防雷措施。
但是在实际应用却存在以下问题:
1)由于避雷针而导致雷击概率增大
2)保护范围小
国内外不少防雷专家,对避雷针能向被保护物有多大的保护距离做了系统的研究得出的结论是:“对一根垂直避雷针无法获得十分肯定的保护区域”。英国的BS6551法规曾指出:“经验显示不能依赖避雷针提供任何保护区内的完整保护”。而德国防雷法规则有意识地不引入避雷针保护范围的概念。从避雷针因侧击雷、绕击雷,造成事故的实例来分析,其保护范围是不十分肯定的。
由于避雷针的引雷作用,所以雷击次数就会提高,当雷电被吸引到针上,在强大的雷电流沿针而流入大地过程中,雷电流周围形成的磁场会产生截应过电压,它与雷电流的大小及变化速度成正比,与雷击的距离成反比。而被保护物的自然屏蔽装置对电磁感应或电磁干扰的屏蔽作用,不能达到有效屏蔽,使被保护区内的弱电设备因感应过电压而损坏。
4)反击的危害
当雷电被吸引到针上,将有数千安的高频电流通过避雷针及其接地引下线和接地装置,此时针和引线的电压很高,若针对被保护物之间的距离小于安全距离时,会由针及引下线向被保护物发生反击,损坏被保护物。我国国标规定针距被保护物的空气中距离≥5米,针距被保护物的接地装置间的地中距离Sd≥3米,针对这一要求,微波塔和电视发射塔的各种天线上的避雷针是难以满足规范的要求。
5)电磁感应问题
在强大的雷电流沿避雷针向下流入地中的过程中,会在周围产生强大的电磁场,它会使微波通信、计算机等设备产生误动。强大的电磁场,可以使金属开口环或打包用铁箍的接触不良处发生放电,从而引燃引爆易燃易爆物。更常见的则是引起微电子设备 (通信设备,计算机设备等)的失灵与损坏。受雷击的针及引线,在高频雷电流作用下,将从接触点至地面产生一个较高的接触电压。当雷电流流入大地扩散时,在入地点沿半径各点形成不同的电位,若跨入该区域会产生很高的跨步电压。在测避雷针不适用于对弱电设备的保护,更不易用于易燃易爆品的防雷保护。因它引来强大的雷电流在接地引线断线卡处易产生火花,还会在附近的金属开口环处产生火花,从而引起事故。
3加强线路绝缘
由于输电线路个别地段需采用大跨越高杆塔(如:跨河杆塔),这就增加了杆塔落雷的机会。高塔落雷时塔顶电位高,感应过电压大,而且受绕击的概率也较大。为降低线路跳闸率,可在高杆塔上增加绝缘子串片数,加大大跨越档导线与地线之间的距离,以加强线路绝缘。在35kV及以下的线路可采用瓷横担等冲击闪络电压较高的绝缘子来降低雷击跳闸率。。
4采用差绝缘方式
此措施适宜于中性点不接地或经消弧线圈接地的系统,并且导线为三角形排列的情况。所谓差绝缘,是指同一基杆塔上三相绝缘有差异,下面两相较之最上面一相各增加一片绝缘子,当雷击杆塔或上导线时,由于上导线绝缘相对较“弱”而先击穿,雷电流经杆塔人地,避免了两相闪络。湖南郴州电业局和包头供电局在雷害严重的一些35kV线路上应用了这一方法,收到了事故率明显下降的效果。据计算,采用差绝缘后,线路的耐雷水平可提高24%。
5采用不平衡绝缘方式
在现代高压及超高压线路上,同杆架设的双回路线路日益增多,对此类线路在采用通常的防雷措施尚不能满足要求时,可考虑采用不平衡绝缘方式来降低双回路雷击同时跳闸率,以保障线路的连续供电。不平衡绝缘的原则是使双回路的绝缘子串片数有差异,这样,雷击时绝缘子串片数少的回路先闪络,闪络后的导线相当于地线,增加了对另一回路导线的耦合作用,提高了线路的耐雷水平使之不发生闪络,保障了另一回路的连续供电。
6藕合地埋线
藕合地埋线可起两个作用,一是降低接地电阻,《电力工程高压送电线路设计手册》指出:连续伸长接地线是沿线路在地中埋设1—2根接地线,并可与下一基塔的杆塔接地装置相连,此时对工频接地电阻值不作要隶_国内外的运行经验证明,它是降低高土壤电阻率地区杆塔接地电阻的有效措施之一。二是起一部分架空地线的作用,既有避雷线的分流作用,又有避雷线的藕合作用。据有的单位的运行经验,在一个20基杆塔的易击段埋设藕合地埋线后,10年中只发生一次雷击故障,有文献介绍可降低跳闸率40%,显著提高线路耐雷水平。
7预放电棒与负角保护针
预放电棒的作用机理是减小导、地线间距,增大藕合系数,降低杆塔分流系数,加大导线、绝缘子串对地电容,改善电压分布;负角保护针可看成装在线路边导线外侧的避雷针,其目的是改善屏蔽,减小临界击距。预放电棒与负角保护针常一起装设,这一方法曾在广东、贵州等地采用,有一定的效果。制作、安装和运行维护方便,以及经济花费不多是其特点。
8装设消雷器
消雷器是一种新型的直击雷防护装置,在国内已有十余年的应用历史,目前架空输电线路上装设的消雷器已有上千套,运行情况良好。虽然对消雷器的机理和理论还存在怀疑和争论,但它确实能消除或减少雷击的事实已被越来越多的人承认与接受。消雷器对接地电阻的要求不严,其保护范围也远比避雷针大。在实际装设时,应认真解决好有关的各个环节中的问题。
9使用接地降阻剂
近几年来国内一些单位在处理接地时使用了降阻剂,取得了较好的降阻效果,介绍降阻剂的文章也不少,降阻剂确实热极一时。据有关资料介绍,降阻剂使用后接地电阻随时间的推移而下降,并且由于其PH值一般均在7.6一8.5之间,有的呈中性略偏碱,对接地体有钝化保护作用,故基本无腐蚀现象。但是,使用较长时间表明接地降阻剂对接地体产生了严重的腐蚀。故在采用这一方法时应关注长期的效果,特别是对接地体的腐蚀问题。
10采用中性点非有效接地方式
在我国35kV及以下电力系统中采用中性点不接地或经消弧线圈接地的方式。这样可使由雷击引起的大多数单相接地故障能够自动消除,不致引起相间短路和跳闸。而在二相或三相落雷时,由于先对地闪络的一相相当于一条避雷线,增加了分流和对未闪络相的耦合作用,使未闪络相绝缘上的电压下降,从而提高了线路的耐雷水平。因此,对35kV线路的钢筋混凝土杆和铁塔,必须做好接地措施。
总之,影响架空输电线路雷击跳闸率的因素很多,有一定的复杂性,解决线路的雷害问题,要从实际出发,因地制宜,综合治理。在采取防雷改进措施之前,要认真调查分析,充分了解地理、气象及线路运行等各方面的情况,核算线路的耐雷水平,研究采用措施的可行性、工作量、难度、经济效益及效果等,最后来决定准备采用某一种或几种防雷改进措施。
转贴于 中国论文下载中心 http://www.studa.net

❹ 输电线路设计

架空线路的功能是输送电能的,它的主要技术参数包括有:电压等级、导线截面、以及线路长度等。这些参数主要是根据电力系统的供需关系通过规划设计来选择确定的,并代表着它的供电能力。
但是在满足一定的技术经济条件要求下,怎样合理地架设架空送电线路则是我们这门课程所要解决的问题。
概括说来,架空线路设计在技术上首先要解决以下两个问题:
其一,导线固定在杆塔上的松紧程度。
其二,杆塔排列位置的确定。
关于导线固定在杆塔上的松紧程度:从技术角度讲,线路架设时导线过于拉紧则可能使导线超过它所能够承受的最大允许拉力,从而使导线受到损坏或使杆塔倾斜,这是不允许的;反之,线路架设时导线过于松弛则可能会破坏绝缘间隙的有关规定或要求,如风吹向导线时,可能使导线对地之间发生闪络或使导线对地面的安全距离不能满足要求等,这同样是不允许的。
关于杆塔排列位置的确定:我们直观分析可知,在一定的距离下,对同一条架设的线路而言,假定杆型已经选定,那么如果杆塔之间的间隔排列过密,则必然使经济投入增加;反之,如果杆塔之间的间隔排列过疏,又将使杆塔受到较大的荷重或拉力,其杆塔的强度可能会难以满足安全要求。
因此,为了解决上述两个问题,在架空线路设计中实际上归结为制作两个曲线来完成的,即制作架线弧垂曲线以解决合理紧线问题;制作模板曲线以解决合理排列杆塔位置问题。
为了制作这两种曲线,在架空线路设计这门课程中,首要的任务就是要学习和掌握导线力学计算原理。导线的力学计算主要是研究在不同气象条件下,导线的应力、弧垂和荷载之间的基本关系。
应当说计算导线的应力和弧垂是架空线路设计中最基本的两项计算内容。依据这种计算,可以分析明确导线产生最大弧垂和受到可能受到最大应力的条件是什么,并由此制定前述的两种曲线以便合理地确定导线架设在空中的松紧程度和杆塔排列在线路路径上的具体位置。这样的设计结果,既可以使导线的应力满足技术要求,又可以保证导线对地的安全距离在允许范围之内。

❺ 220KV电网的继电保护 毕业设计

5.1主变压器保护
5.1.1 概述
电力变压器是电力系统中十分重要的供电元件,它的故障将对供电可靠性和系统的正常运行带来严重的影响,而本次变电所设计的变电所是市区220kV降压变电所,如果不保证变压器的正常运行,将会导致全所停电,甚至影响到下一级降压变电所的供电可靠性。
变压器的故障可分为内部和外部两种故障。内部故障是指变压器油厢里面的各种故障,主要故障类型有:
1)各绕组之间发生的相间短路;
2)单相绕组部分线区之间发生的匝间短路;
3)单相绕组或引出线通过外壳发生的单相接地短路;
4)铁芯烧损。
变压器的外部故障类型有:
1)绝缘套管网络或破碎而发生的单相接地(通过外壳)短路;
2)引出线之间发生的相间故障。
变压器的不正常运行情况主要有:
1)由于外部短路或过负荷而引起的过电流;
2)油箱漏油而造成的油面降低;
3)变压器中性点电压升高或由于外加电压过高而引起的过励磁。
为了防止变压器发生各种类型故障和不正常运行时造成不应有的损失,保证 系统安全连续运行,故变压器应装设一系列的保护装置。
5.1.2变电所主变保护的配置
5.1.2.1主变压器的主保护
1)瓦斯保护
对变压器油箱内的各种故障以及油面的降低,应装设瓦斯保护,它反应于油箱内部所产生的气体或油流而动作。其中轻瓦斯动作于信号,重瓦斯动作于跳开变压器各侧电源断路器。如图5-1所示为瓦斯保护的原理接线图。
2) 差动保护
对变压器绕组和引出线上发生故障,以及发生匝间短路时,其保护瞬时动作,跳开各侧电源断路器。

5.1.2.2主变压器的后备保护
为了反应变压器外部故障而引起的变压器绕组过电流,以及在变压器内部故障时,作为差动保护和瓦斯保护的后备,所以需装设过电流保护。
而本次所设计的变电所,电源侧为220kV,主要负荷在110kV侧,即可装设两套过电流保护,一套装在中压侧110kV侧并装设方向元件,电源侧220kV侧装设一套,并设有两个时限 和 ,时限设定原侧为 ≥ +△t,用一台变压器切除三侧全部断路器。
5.1.2.3过负荷保护
变压器的过负荷电流,大多数情况下都是三相对称的,因此只需装设单相式过负荷保护,过负荷保护一般经追时动作于信号,而且三绕组变压器各侧过负荷保护均经同一个时间继电器。
5.1.2.4 变压器的零序过流保护
对于大接地电流的电力变压器,一般应装设零序电流保护,用作变压器主保护的后备保护和相邻元件接地短路的后备保护,一般变电所内只有部分变压器中性点接地运行,因此,每台变压器上需要装设两套零序电流保护,一套用于中性点接地运行方式,另一套用于中性点不接地运行方式。
5.2限流电抗器的选择
为了选择10kV侧各配电装置,因短路电流过大,很难选择轻型设备,往往需要加大设备型号,这不仅增加投资,甚至会因断流容量不足而选不到合乎要求的电器,选择应采取限制短路电流,即在10kV侧需装设电抗器。一般按照额定电压、额定电流、电抗百分数、动稳定和热稳定来进行选择和检验。
5.2.1额定电压和额定电流的选择

、 — 电抗器的额定电压和额定电流
、 — 电网额定电压和电抗器的最大持续工作电流
5.2.2 电抗器百分数的选择
1)电抗器的电抗百分数按短路电流限制到一定数值的要求来选择,设要求短路电流限制到 ,则电源至短路点的总电抗标幺值为:
/ — 基准电流
—电源至电抗器前系统电抗标幺值
电抗器在其额定参数下的百分电抗

2)电压损失检验:普通电核器在运行时,电抗器的电压损失不大于额定电压的5%,即:
— 负荷功率因数角一般取0.8
3)母线残压检验,为减轻短路对其他用户的影响,当线路电抗器后短路时,母线残压不能低于电网额定值的60~70%
即:
5.2.3热稳定和动稳定的检验
热稳定和动稳定检验应满足下式:

、 — 电抗器后短路冲击电流和稳态电流
、 — 电抗器的动稳定电流和短时热电流(t =1s)
5.3防雷及接地体设计
5.3.1 概述
电气设备在运行中承受的过电压,有来自外部的雷电过电压和由于系统参数发生变化时电磁能量产生振满和积聚而引起的内部过电压两种类型。按其产生原因,它们又可分为以下几类:

直击雷过电压
雷电过电压 感应雷过电压
侵入雷电流过电压
长线电容效应
工频过电压 不对称接地故障
甩负荷
消弧线圈线性谐振
过电压 暂时过电压 线性谐振
传递过电压

线路断线
谐振过电压 铁磁谐振
电磁式电压互感器饱和
参数谐振发电机同步或异步自励磁
开断电容器组过电压
操作电容负荷过电压 开断空载长线过电压
关合空载长线过电压
开断空载变压器过电压
操作过电压 操作电感负荷过电压 开断并联电抗器过电压
开断高压电动机过电压
角列过电压
间歇电弧过电压
5.3.2 防雷保护的设计
变电所是电力系统的中心环节,是电能供应的来源,一旦发生雷击事故,将造成大面积的停电,而且电气设备的内绝缘会受到损坏,绝大多数不能自行恢复并严重影响国民经济和人民生活,因此,要采取有效的防雷措施,保证电气设备的安全运行。
变电所的雷击害来自两个方面,一是雷直击变电所,二是雷击输电线路后产生的雷电波沿线路向变电所侵入,对直击雷的保护,一般采用避雷针和避雷线,使所有设备都处于避雷针(线)的保护范围之内,此外还应采取措施,防止雷击避雷针时不致发生反击。
对侵入波的防护主要措施是变电所内装设阀型避雷器,以限制侵入变电所的雷电波的幅值,防止设备上的过电压不超过其中击耐压值,同时在距变电所适当距离内装设可靠的进线保护。
避雷针的作用:将雷电流吸引到其本身并安全地将雷电流引入大地,从而保护设备,避雷针必须高于被保护物体,可根据不同情况或装设在配电构架上,或独立装设,避雷线主要用于保护线路,一般不用于保护变电所。
避雷器是专门用以限制过电压的一种电气设备,它实质是一个放电器,与被保护的电气设备并联,当作用电压超过一定幅值时,避雷器先放电,限制了过电压,保护了其它电气设备。

5.3.2.1 避雷针的配置原则:
1)电压110kV及以上的配电装置,一般将避雷针装在配电装置的构架或房顶上,但在土壤电阻率大于1000Ω.cm的地区,宜装设独立的避雷针。
2)独立避雷针(线)宜装设独立的接地装置,其工频接地电阻不超过10Ω。
3)35kV及以下高压配电装置架构或房顶不宜装避雷针,因为其绝缘水平很低,雷击时易引起反击。
40)在变压器的门型架构上,不应装设避雷针、避雷线,因为门形架距变压器较近,装设避雷针后,构架的集中接地装置,距变压器金属外壳接地点在址中距离很难达到不小于15米的要求。
5.3.2.2 避雷器的配置原则
1)配电装置的每组母线上均应装设避雷器。
2)旁路母线上是否应装设避雷器,应视当旁路母线投入运行时,避雷器到被保护设备的电气距离是否满足而定。
3)330kV及以上变压器和并联电抗器处必须装设避雷器,并应尽可能靠近设备本体。
4)220kV及以下变压器到避雷器的电气距离超过允许值时,应在变压器附近增设一组避雷器。
5)三绕组变压器低压侧的一相上宜装设一台避雷器。
6)110kV~220kV线路侧一般不装设避雷器。
5.3.3 接地装置的设计
接地就是指将地面上的金属物体或电气回路中的某一节点通过导体与大地相连,使该物体或节点与大地保持等电位,埋入地中的金属接地体称为接地装置。
本变电所采用棒形和带形接地体联合组成的环形接地装置。接地装置应尽可能埋在地下,埋设深度一般为0.5~1米,围绕屋内外配电装置,主控楼、主厂房及其它需要装设接地网的建筑物,敷设环形接地网。这些接地网之间的相互联接线不应少于两根干线。接地网的外像应闭合,外像各角做成圆弧形,圆弧半径不宜小于均压带间距离的一半,在接地线引进建筑物的入口处,应设标志。
5.3.4 主变压器中性点放电间隙保护
为了保护变压器中性点,尤其是不接地高压器中性点的绝缘,通常在变压器中性点上装设避雷器外,还需装设放电间隙,直接接地运行时零序电流保护起作用,动作保护接地变压器,避雷器作后备;变压器不接地时,放电间隙和零序过电压起保护作用,大气过电压时,线路避雷器动作,工作过电压时,间隙保护动作。因氧化锌避雷器残压低,无法与放电间隙无法配合,故选用阀型避雷器。
5.3.5变电所的防雷保护设计
由于本次所设计选择变压器为分级绝缘,即220kV中性点绝缘等级为110kV,110kV中性点绝缘等级为35kV,所以220kV中性点应与中性点绝缘等级相同的避雷器,故220kV中性点装设FZ-110,110中性点装设FZ-40避雷器。