当前位置:首页 » 论文题目 » 凸缘套筒的开题报告
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

凸缘套筒的开题报告

发布时间: 2021-03-30 03:40:52

1. 套筒数控加工工艺编程论文开题报告怎么写

自己从我这里购买一份完整的数控加工工艺编程论文即可或者我帮你做

2. 法兰盘用钻床钻孔夹具设计

001 法兰盘钻3-直径11孔夹具设计

【说明】该全套毕业设计作品包括:论文+源代码+程序+开提报告+PPT答辨稿数据流程图、功能模块图、运行界面图、源代码和程序,另附带有开题报告、论文全文,按计算机毕业论文格式要求书写,适用于计算机专业
【温馨提示】为防止网络搜取本站内容,故论文只贴出部分!
信用说明

【AA101】副翼摇臂零件的机械加工工艺及铣槽夹具设计

【AA102】花键套零件的工艺规程及钻4-M6孔的夹具设计

【AA103】曲柄板零件的工艺规程及铣A,B面的夹具设计

【AA104】曲柄板零件的工艺规程及铣上端面的夹具设计

【AA105】梳刀麻花架零件的工艺规程及钻M10孔的工装夹具设计

【AA106】支撑块零件的工艺规程及钻M16孔的的工装夹具设计

【AA107】支座铣底面夹具设计

【AA108】轴承座零件的工艺规程及车Φ42孔的工装夹具设计

【AA109】轴承座套零件的加工工艺规程

【AA110】拨叉831008钻20孔夹具设计

【AA111】法兰盘钻3-直径11孔夹具设计

3. 请问您那有关于液压在汽车生产或汽车系统中应用的论文或者资料么 有的话给我发一个,感激不尽! 我的邮箱

第2章主减速器的结构设计过程
2.1 设计方案的确定
2.1.1 主减速比的计算
主减速比对于主减速器的结构形式、轮廓尺寸、质量大小以及当变速器处于最高单位时汽车的动力性和燃料经济性都有直接影响。 的选择应在汽车总体设计时和传动系统的总传动比一起由则和那个车动力计算来确定。可利用在不同的功率平衡图来计算对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择 值,可是汽车获得最佳的动力性和燃料经济性。
为了得到足够的功率儿使得最高车速稍微有所下降,一般选的比最小值大10%~25%,即按照下是选择:

i =(0.377~0.472)

=(o.377~0.472) 0.5828 2400/(80 1 1 3.478)=1.478~2.23
式中:r ——车轮的滚动半径
i ——变速器最高档传动比1.0(为直接档)
i ——分动器或动力器的最高档传动比
i ——轮边减速器的传动比
2.1.2 主减速器结构方案的确定
(1)双曲面齿轮具有一系列的优点,因此比螺旋齿轮应用更加广泛。本次设计也采用双曲面齿轮。
(2)主减速器主动锥齿轮的支撑形式及其安装方式的选择,本次设计用:主动锥齿轮:悬臂式支撑(圆锥滚子轴承)
从动锥齿轮:跨置式支撑(圆锥滚子轴承)
(3)从动锥齿轮的支撑方式和安装方式的选择
从动锥齿轮的两端支撑多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,而小端相向外。为了防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母调整。主减速器从动锥齿轮采用无辐式结构并采用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上。
(4)主减速器的轴承预紧及齿轮啮合调整
支撑主减速器的圆锥滚子轴承需要预紧以消除安装的原始间隙、磨合期间该间隙的增大及增加支撑刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的1/2。预紧力虽然可以增大支撑刚度,改善齿轮的啮合和轴承工作条件,但当预紧力超过某一个理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可以取为发动机最大转矩时换算做得轴向力的30%。
主动锥齿轮轴承预紧度的调整采用波形套筒,从动齿轮轴承预紧度的调整采用调整螺母。
(5)主减速器的减速形式 主减速器的减速形式分为单级减速、双级减速、单级贯通、双级贯通、主减速及其轮边减速等。减速形式的选择与汽车的类别及使用条件有关,有时也与制造厂的产品系列及其制造条件有关,但是它主要取决于由动力性、经济性等整车性能所要求得主减速比的大小及其驱动桥下的离地间隙、驱动桥的数目及其布置形式等。通常主减速比不大于7.6的各种中小汽车上。
2.2 主减速器的基本参数选择与设计计算
2.2.1 主减速器齿轮载荷的计算
通常是将发动机最大转矩配以传动系最低档位传动比时和驱动车轮打滑两种情况作用下主减速器从动齿轮上的转矩(T ,T )较小者,作为载货汽车计算中用以验算主减速器从动齿轮最大应力的计算载荷。即

式中:T ——发动机最大转矩1070N*M
i ——由发动机所计算的主减速器从动齿轮之间的传动系最低档传动比

根据同类型的车型的变速器传动比选择i =2.47
式中: ——上述传动部分的效率,取 =0.9
k ——超载系数,取k =1.0
n——驱动桥数目2
G ——汽车满载时驱动桥给水平地面的最大负荷,N;但是后桥来说还应该考虑到汽车加速时负荷增大值,但是可以取

,i ——分别为由所计算的主减速器从动齿轮到驱动轮之间的传动效率和减速比,分别是0.96和3.478
由式(2—1),式(2—2)求得的计算载荷,是最大转矩而不是正常持续转矩,不能用它作为疲劳损坏依据。对于公路车辆来说,使用条件较非公路车辆稳定,其正常持续转矩是根据所谓平均牵引力的值来确定的,即是主减速器的平均计算转矩为

式中:G ——汽车满载总重32000 9.8N
G ——所牵引的挂车满载总重,N,仅用于牵引车取G =0
f ——道路滚动阻力系数,货车通常取0.015~0.020,
f ——汽车正常使用时的平均爬坡能力系数。货车通常取0.05~0.09,可以取f =0.07
f ——汽车性能系数



2.2.2 主减速器齿轮参数的选择z
(1)齿数的选择 对于单级主减速器,i 6时,z 的最小值可以取为5,但是为了啮合平稳及提高疲劳强度,z 最好大于5.当i 较小时,z 可以取7~12,但是这时常常会因为主动齿轮、从动齿轮的尺寸太大而不能保证所要求桥下离地间隙为了磨合均匀,主动齿轮、从动齿轮的齿数之间应避免有公约数;为了得到理想的齿面重叠系数,其齿数之和对于载货汽车应不少于40.多以取为z 17 ,z2为38.
(2)节圆直径的选择 根据从动锥齿轮大的计算转矩(见式2—2,式2—3)并取两者中较小的一个为计算依据,按照经验公示选出:

式中:K ——直径系数,取K =13~16
T ——计算转矩,N*M,取T =T =2653.34N*M
计算得,d =137.74~169.52mm,考虑到此车是重型载重卡车,其经常工作在超载的情况下,初取d =286mm。
(3)齿轮断面模数的选择 d 选定后,可以按式m=
算出从动齿轮大端模数,m=5,并用下式校核

(4)齿面宽的选择 汽车主减速器螺旋锥齿轮齿面宽度推荐为:F=0.155d =44.33mm,考虑其超载情况,可初取F=60mm。
(5)双齿面齿轮的偏移距E 轿车、轻型客车和轻型载货汽车主减速器的E值,不应超过从动齿轮节锥距A 的40%(接近于从动齿轮节圆直径d 的20%);传动比则E也越大,大传动比的双曲面齿轮传动,偏移距E可达到从动齿轮节圆直径d 的20%-30%。当E大于d 的20%时,应检查是否发生根切。
(6)双曲面齿轮的偏移方向 由从动齿轮的锥顶向其齿面看去并使主动齿轮右侧,这时如果主动齿轮在从动齿轮下方时为下偏移。下偏移时主动齿轮的旋转方向为左旋,从动齿轮为右旋。
(7)螺旋锥齿轮与双曲面齿轮的螺旋方向 对着齿面看去,如果齿轮的弯曲方向从其小端到大端为顺时针走向时则称为右旋齿,反时针时则成为左旋齿。主从动齿轮螺旋方向是不同的。螺旋锥齿轮与双曲面齿轮在传动时所产生的轴向力,其方向决定于齿轮的螺旋方向和旋转方向。判断齿轮的旋转方向是顺时针还是逆时针时,要向齿轮背面看去。所以主动齿轮螺旋方向是左旋,旋转方向是顺时针。
(8)螺旋角的选择 双曲面齿轮传动,由于有了偏移距而使主从动齿轮的名义螺旋角不等,且主动齿轮的大,而从动齿轮的小。螺旋角应满足足够大以使m =1.25.。因越大就越平稳噪声就越低。螺旋角过大时会引起轴向力也越大因此有一个适当的范围。
“格里森”制推荐用下式,近似的预选为主动齿轮螺旋角的名义值

式中: ——主动齿轮名义(中点)螺旋角的预选值
预选 后尚需要用刀号来加以校正。首先要求出近似刀号

近似刀号=

式中 , ——主、从动齿轮的齿根角,以“分”表示。

按照近似刀号选取与其最接近的标准刀号(计有:

然后按照选定的标准刀号反着算螺旋角 :

式中 标准刀号为3
最后选用的 与 之差不得超过5.
(9)齿轮法向压力角的选择 格里森规定载货汽车和重型汽车则应该分别选用20 和22 30 的发向压力角,对于双曲面齿轮,由于其主动齿轮轮齿的法相压力角不等,因此应按照平均压力角考虑,载货汽车选用22 30 的平均压力角。
(10)铣刀盘名义直径2r 的选择 按照从动齿轮节圆直径d 选取刀盘名义直径r =152.4mm。
2.2.3 主减速器双曲面齿轮的几何尺寸计算与强度计算
有附录1计算
(1) 主减速器圆弧齿双曲面齿轮的几何尺寸计算
双重收缩齿的优点在于能够提高小齿轮粗切工序。双重收缩齿的齿轮参数,其大、小齿轮根锥角的选定是考虑到用一把使用上最大的刀顶距地粗切刀,切出沿着齿面宽的方向正确的吃后收缩来。当打齿轮直径大于刀盘半径时采用这种方法是最好的。
圆弧齿双面齿轮的这一计算方法适用于轴交角为90 的所有传动比,但是应该使z 6 , z + z 40。此计算方法限制用于格里森刀盘切齿。对于大齿轮直径超过650mm或小齿轮轴线偏移距E大于100mm时候,必须另行考虑。
由附录双曲面齿轮计算用表第65项求的的齿轮线曲率半径 r 与第7项选定的刀盘半径r 的1%。否则需要重新计算20项至65项。如果r <r ,则需要将第20项的tan 的数值减小,重新计算各项,并将计算结果写在第二行框内。若r >r ,则应增加tan 的数值。修正量是根据曲率半径的差值来选出的。若无特殊考虑,则第二次计算可以求得tan 改变10%。如果第二次计算得出的r 新值仍不接近r ,就要进行第三次计算,通常也是最后一次计算,可用下式tan :

(2) 主减速器双曲面齿轮的强度计算
1. 单位齿长的圆周力

p=

式中 p——单位齿长上的圆周力,N/mm
P——作用在齿轮上的圆周力,N,按照发动机最大转
T 最大附着力矩两种载荷工况进行计算
按照发动机最大转矩计算时:

I档时候p=507.344N/mm<(p) =1429N/mm
直接档位时p=205.4024N*mm<(p) =250 N/mm
按照最大附着力矩计算时

可知,校核成功。
2.轮齿的弯曲强弯曲计算用综合系数J度计算。汽车主减速器双曲面齿轮轮齿的计算弯曲应力 (N/mm )为

式中 K ——超载系数1.0;

K ——尺寸系数K =

K ——载荷分配系数1.1~1.25
K ——质量系数,对于汽车驱动桥齿轮,档齿轮接触良好、节及径想跳动精度高时,取1
J——计算弯曲应力用的综合系数,见图3—2.J =0.2 J =0.27
T 作用下:从动齿轮上的应力 =188.37MPa<700MPa;
T 作用下:从动齿轮上的应力 =160.36MPa<210.9MPa;

当计算主动齿轮时, 与从动相当,而J <J ,故 < ,
综上所述,故所计算的齿轮满足弯曲强度的要求。
汽车主减速器齿轮的损坏形式主要时疲劳损坏,而疲劳寿命主要与日常转矩即平均计算转矩T 有关,T 或T 只能用来检验最大应力,不能作为疲劳寿命的计算依据。
2. 轮齿的接触强度计算 双曲面齿轮齿面的计算接触应力 (MPa)为:

式中 C ——材料的弹性系数,对于钢制齿轮副取232.6N /mm
K =1 =1 K =1.11 K =1
K ——表面质量系数,对于制造精度的齿轮可取1
J ——计算应力的综合系数,J =0.1875,见图3—3所示
T ——主动齿轮计算转矩,N/m
=1207.23MPa<( =1750MPa
=1226.86MPa<( =1750MPa,故负荷要求、校核合理。
2.3 主减速器齿轮的材料及热处理
汽车驱动桥主减速器的工作相当繁重,与传动系其他齿轮比较,它具有载荷大、工作时间长、载荷变化多、多冲击等特点。其损坏的形式主要有齿根弯曲折断、齿面疲劳点蚀(剥落)、磨损和擦伤等。据此对驱动桥齿轮的材料及热处理应有以下要求:
(1) 具有高的弯曲疲劳强度和接触疲劳强度以及较好的齿面耐磨性,故齿表面应有高的强度;
(2) 齿轮芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下轮齿根部折断;
(3) 钢材的锻造、切削与热处理等加工性能良好,热处理变形小或变形规律性易控制,以提高产品质量、减少制造成本并降低废品率;
(4) 选择齿轮材料的合金元素时要适应我国的情况。例如:为了节约镍、滒等我国发展了以锰、钒、錋、钛、硅为主的合金结构刚系统。
汽车主减速器和差速器圆锥齿轮与双曲面齿轮目前均用渗碳合金钢制造。常用的钢号20C M T ,20C M M ,20C N M ,20M VB,20M 2T B,本次设计中采用了20C M T 。
用渗碳合金钢制造齿轮,经渗碳、淬火、回火后,齿轮表面硬度可高达HRC58~64,而芯部硬度较低,当m≤8时为HRC32~45。
对于渗碳深度有如下的规定:当端面模数m≤5时,为0.9~1.3mm
由于新齿轮润滑不良,为了防止齿轮在运转初期产生胶合、咬死或檫伤,防止早期磨损,圆锥齿轮与双曲面齿轮副草热处理及精加工后均予以厚度为0.005~0.010~0.020mm的磷化处理或镀铜、镀锡。这种表面镀层不应用于补偿零件的公差尺寸,也不能代替润滑油。
对齿面进行喷丸处理有可能提高寿命达25%。对于滑动速度高的齿轮,为了提高其耐磨性进行渗流处理。渗流处理时温度低,故不会引起齿轮变形。渗流后摩擦系数可显著降低,故即使润滑条件较差,也会防止齿轮咬死、胶合和檫伤现象产生。
2.4 主减速器的润滑
主减速器及差速器的齿轮、轴承以及其他摩擦表面均需润滑,其中尤其应注意主减速器主动锥齿轮的前轴承的润滑,因为润滑不能靠润滑油的飞溅来实现。为此,通常是在从动齿轮的前端近主动齿轮处的主减速器壳的内壁上设一专门的集油槽,将飞溅到壳体内壁上的部分润滑油收集起来再经过进油孔引至前轴承圆锥滚子的小端处,由于圆锥滚子在旋转时的泵油作用,使润滑油由圆锥滚子的下端通向大端,并经前轴承前端的回油孔流回驱动桥壳中间的油盆中,使润滑油得到循环。这样不但可使轴承得到良好的润滑、散热和清洗,而且可以保护前端的油封不损坏。为了保证有足够的润滑油流进差速器,有的采用专门的倒油匙。
为了防止因温度升高而使主减速器壳和桥壳内部压力增高所引起的漏油,应在主减速器壳上或桥壳上装置通气塞,后者应避开油溅所及之处。
加油 孔应设置在加油方便之处,油孔位置也决定了油面位置。放油孔应设在桥壳最低处,但也应考虑到汽车在通过障碍时放油塞不易被撞掉。
结论
在本次毕业设计的过程中,我从实验室开始自己动手拆装主减速器及其内部的差速器等结构,一一熟悉再配合书本更加深刻的认识了本次设计的内容,熟悉了结构对于接下来的计算过程有很大的帮助,回想着拆装过程我认真的选则零件,再验证再选择直到最后确定,有了准确的数据我就开始画主减速器总成图以及后来的几个零件图。
本次毕业设计,让我增长了更多的知识,对驱动桥有了更进一步的认识,更加熟练地掌握了CAD及其我们机械行业常用的绘图软件,并且锻炼了我的动手能力。
参考文献
1 汽车工程手册.北京:人民交通出版社,2001
2 刘惟信.汽车设计.清华大学出版社,2001
3 陈家瑞.汽车构造.北京:机械工业出版社,2005
4 王望予.汽车设计 第4版.北京:机械工业出版社,2007
5 韩晓娟.机械设计课程设计.北京:机械工业出版社,2000
6 刘哲义.一种新型汽车差速机构——托森差速器.汽车运输,2000,13~14
7许铁林.工程机械轮边主减速器结构设计研究。工程机械,1997,32~42
8姚建平.装载机驱动桥改进设计研究.工程机械,2005,33~45
9 许立中,龚景安.机械设计.北京:机械工业出版社,2003,45~71
10余志生.汽车理论.北京:机械工业出版社,2003,66~70
11 Thomson Delmar Learning.Total Automotive Technology.北京:机械工业出版社,2004,14~22
12 Dohann F Hartk H Tube.Hydroforming—reseach and Practical Application.journal of Material Processing Technology,1997,21~25
13 Mortor.vehicle.science.Part2.CHAPMAN AND HALL Ltd,1982,61~92
14 Shichi Sano,Yoshimi furukawa,etc.Four Wheel Steering Vteering Vehile: Vehicle System Dynamic, 1993
15 Zoubir A M. The bootstrap.a powerful tool for statistical signal processing with small sample set.ICASSP—99Tutorial,1999,25~29
16 吴涛.AutoCAD教程.北京:清华大学出版社,北方交通大学出版社

课题名称: 斯太尔联轴式重型卡车后桥主减速器设计

一、综述本课题国内外研究动态,说明选题的依据和意义
早在1890年法国的雷诺1号车,采用密闭箱式变速器、万向节传动轴和伞齿轮主减速器。而到了1898年,法国人路易斯.雷诺将万向节首先应用汽车传动系中,并发明了锥齿轮式主减速器。在现代汽车和重型卡车的驱动桥上,主减速器采用的最广泛的是“格里森”(Glesson)制或者“奥利康”(Oerlikon)制的螺旋锥齿轮和双曲面齿轮。双曲面齿轮工作时,齿面间的压力和滑动较大,齿面油膜易被破坏,必须采用双曲面齿轮油润滑,绝不允许用普通齿轮油代替,否则将使齿面迅速擦伤和磨损,大大降低使用寿命。主减速器是汽车传动系中减小转速、增大扭矩的主要部件。对发动机纵置的汽车来说,主减速器还利用锥齿轮传动以改变动力方向。汽车正常行驶时,发动机的转速通常在2000至3000r/min左右,如果将这么高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需很大,而齿轮副的传动比越大,两齿轮的半径比也越大,换句话说,也就是变速箱的尺寸会越大。另外,转速下降,而扭矩必然增加,也就加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可使主减速器前面的传动部件如变速箱、分动器、万向传动装置等传递的扭矩减小,也可变速箱的尺寸质量减小,操纵省力。改革开放开始时,中国汽车工业与发达国家汽车工业在技术上整体存在着30年左右的巨大差距。经过改革开放30年来的努力,通过引进技术与自主开放相结合,目前中国汽车工业在整体上与国际先进水平的技术差距已经缩短到5-10年。汽车零部件的研究与开发始终是中国汽车工业的最薄弱部分。虽然经过改革开放以来的不懈努力,进入21世纪后汽车零部件的研发有了较大进展,但与汽车业制造强国仍然有一定的差距,因此我们要好好内应力让我国汽车制造业走向世界的步伐不断加速
二、研究的基本内容,拟解决的主要问题
1、斯太尔重型载重卡车后桥主减速器的结构型式确定
2、斯太尔重型载重卡车后桥主减速器的结构设计
3、斯太尔重型载重卡车后桥差速器的结构设计
4、斯太尔重型载重卡车后桥主减速器零件设计
三、研究步骤、方法及措施研究步骤:
1、结构实习,了解斯太尔重型载重卡车后桥主减速器的结构型式
2、确定斯太尔重型载重卡车后桥主减速器的结构型式
3、测绘斯太尔重型载重卡车后桥主减速器
4、设计斯太尔重型载重卡车后桥主减速器的结构
5、设计斯太尔重型载重卡车后桥差速器的结构
6、设计斯太尔重型载重卡车后桥主减速器零件
四、研究工作进度
1—4周:结构实习,主减速器的结构型式确定,翻译外文资料,撰写开题报告和文献综述。
5—8周:主减速器测绘,主减速器结构设计。
9—12周:差速器结构设计,零件设计。
13—16周:撰写毕业论文。
17—18周:准备答辩
五、主要参考文献
1、汽车工程手册.北京:人民交通出版社,2001
2、刘惟信.汽车设计.清华大学出版社,2001
3、陈家瑞.汽车构造.北京:机械工业出版社,2005
4、王望予.汽车设计 第4版.北京:机械工业出版社,2007
5、李钊刚.国内外工业工业齿轮减速器技术的发展——迎接WTO的挑战与机遇(一),机械传附录2

课题名称: 斯太尔联轴式重型卡车后桥主减速器设计

一、课题国内外现状
驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。而主减速器和差速器是驱动轿的主件。主减速器是汽车传动系中减小转速、增大扭矩的主要部件,差速器的作用就是在向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。
对于重型卡车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而主减速器和差速器在传动系统中起着举足轻重的作用。随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N•m以上,百公里油耗是一般都在34升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而减速器和差速器则是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良的传动系统便成了有效节油的措施之一。
二、研究主要成果
近些年来国内外一些高等院校和科研单位对以主减速器和差速器为主的驱动桥的改造做了大量的研究工作。东风汽车公司设计开发了一种轻微型混合动力电动汽车的动力总成。该动力总成能达到两个动力源分别独立输出动力和混合输出动力的目的,通过在变速箱输出端增设主减速器,将动力输出给差速器和传动轴,最后到车轮。法拉利F430使用电子差速器(E-Diff)和F1变速箱及传动装置,E-Diff电子差速器已经在F1单座赛车上使用了多年,以保证转弯时保持最大附着力,消除车轮空转。在公路上,它在稳定汽车行驶性能方面,是一个不可思议的技术改进。电子差速器由三套主要子系统组成:与F1变速箱(如果有的话)共用的高压液压系统;由阀门、传感器和电子控制装置组成的一套控制系统;装在变速箱左侧里面的一套机械装置。F430提供了一个新型的铸铝传动箱,它可以将变速箱连同电子差速器、伞形主减速器以及机油箱都罩在一起。6速变速箱带有多锥面同步器,同时,为了充分利用新引擎较高的动力和扭矩并确保可靠性,加长了第6挡齿轮和主减速器。
三、发展趋势:
据了解,目前我国重卡大量使用的斯太尔驱动桥属于典型的双级减速桥,其二级减速的结构,主减速器总成相对较小,桥包尺寸减小,因此离地间隙加大,通过性好,承载能力也较大。广泛用于公路运输,以及石油、工矿、林业、野外作业和部队等多种领域的车辆。不过,有专家认为,双级减速桥的缺点也比较明显:传动效率相对较低,油耗高;长途运输容易导致汽车轮毂发热,散热效果差,为了防止过热发生爆胎,不得不增加喷淋装置;结构相对复杂,产品价格高等。因此,在欧美重型汽车中采用该结构的车桥产品呈下降趋势,日本采用该结构的产品更少。我国双级桥使用比例下降也是必然的,专家预测今后几年内,重型车桥将会形成以下产品格局:公路运输以10 吨及以上单级减速驱动桥、承载轴为主;工程、港口等用车以10 吨级以上双级减速驱动桥为主。技术方面,轻量化、舒适性的要求将逐步提高。
四、存在问题
汽车主减速器齿轮早期失效问题;汽车主减速器盆形齿轮热处理致裂;主减速器在运行过程中产生的各种噪声等等,最主要的是目前我国卡车中,双级减速桥的应用比例还在60%左右,而双级减速桥的缺点比较明显:传动效率相对较低,油耗高;长途运输容易导致汽车轮毂发热,散热效果差,为了防止过热发生爆胎,不得不增加喷淋装置;结构相对复杂,产品价格高等。五、主要参考文献
1 汽车工程手册.北京:人民交通出版社.2001
2 刘惟信.汽车设计.清华大学出版社,2001
3 陈家瑞.汽车构造.北京:机械工业出版社,2005
4 王望予.汽车设计 第4版.北京:机械工业出版社,2007
5 韩晓娟.机械设计课程设计.北京:机械工业出版社,2000
6 余志生.汽车理论.北京:机械工业出版社,2003, 66~70
7 刘哲义.一种新型汽车差速机构——托森差速器.汽车运输,2000,13~14
8 许铁林.工程机械轮边主减速器结构设计研究。工程机械,1997,32~42
9 姚建平.装载机驱动桥改进设计研究.工程机械,2005,33~45
10 许立中,龚景安.机械设计.北京:机械工业出版社,2003,45~71
11 Thomson Delmar Learning.Total Automotive Technology.北京:机械工业出版社,2004,14~22
12 Dohann F Hartk H Tube.Hydroforming—reseach and Practical Application.journal of Material Processing Technology,1997,21~25
13 Mortor.vehicle.science.Part2.CHAPMAN AND HALL Ltd,1982,61~92
14 Shichi Sano,Yoshimi furukawa,etc.Four Wheel Steering Vteering Vehile: Vehicle System Dynamic, 1993
15 Zoubir A M. The bootstrap.a powerful tool for statistical signal processing with small sample set.ICASSP—99Tutorial,1999,25~29

4. 汽车检测与维修技术毕业论文和开题报告

汽车检测3分(内容丰富) 编辑词条 摘要 汽车维修,就是对出现故障的汽车通过技术手段排查,找出故障原因,并采取一定措施使其排除故障并恢复达到一定的性能和安全标准。汽车维修包括汽车大修和汽车小修,汽车大修是指用修理或更换汽车任何零部件(包括基础件)的方法,恢复汽车的完好技术状况和完全(或接近完全)恢复汽车寿命的恢复性修理。而汽车小修是指:用更换或修理个别零件的方法,保证或恢复汽车工作能力的运行性修理。 编辑摘要目录-[ 隐藏 ]1定义 2分类 3常见问题 编辑本段|回到顶部定义 汽车检测 vehicle detection,是为确定汽车技术状况或工作能力的检查。
汽车在使用过程中,随着使用时间的延长(或行驶里程的增加),其零件逐渐磨损、腐蚀、变形、老化,以及润滑油变质等,致使配合副间隙变大,引起运动松旷、振动、发响和漏气、漏水、漏油等,造成汽车技术性能下降。汽车维护作业(或称汽车保养作业)的核心是“维护”汽车技术状况的完好.就是通过清洁、 编辑本段|回到顶部分类 检测的目的可分为安全环保检测和综合性能检测两大类。
( 1 )安全环保检测。安全环保检测是指对汽车实行定期和不定期安全运行和环境保护方面所进行的检测。目的是在汽车不解体情况下建立安全和公害监控体系,确保车辆具有符合要求的外观容貌和良好的安全性能,限制汽车的环境污染程度,使其在安全、高效和低污染工况下运行。
( 2 )综合性能检测。综合性能检测是指对汽车实行定期和不定期综合性能方面的检测。目的是在汽车不解体情况下,对运行车辆确定其工作能力和技术状况,查明故障或隐患部位及原因,对维修车辆实行质量监督,建立质量监控体系,确保车辆具有良好的安全性、可靠性、动力性、经济性、排气净化性和噪声污染性,以创造更大的经济效益和社会效益。 编辑本段|回到顶部常见问题 1、汽车技术状况:定量测得的表征某一时刻汽车外观和性能的参数值的总和。
2、汽车检测:确定汽车技术状况或工作能力进行的检查和测量。
3、汽车诊断:在不解体(或仅卸下个别小件)条件下,确定汽车技术状况或查明故障部位、原因进行的检测、分析与判断。
4、汽车诊断参数包括工作过程参数、伴随过程参数和几何尺寸参数。
5、诊断参数的选择原则:灵敏性、单值性、稳定性、信息性、经济性6诊断标准的类型:国家、行业、地方、企业
7、诊断参数标准的组成:初始值Pf、许用值Pd和极限值Pn。
8、测量误差的分类:按测量误差的表示方法分为绝对和相对,按测量误差出现的规律分为系统、随机和过失,按测量误差的状态分为静态和动态。
9、绝对误差是测量值与被测量值之间的差值;相对误差是测量值的绝对误差与被测量值真值的比值,用百分比表示。
10、检测设备一般采用最大引用误差不能超过的允许值,作为划分精度等级尺度,常见的精度等级有0.1、0.2、0.5、1.0、1.5、2.0、2.5、5.0
11、系统误差:在同一测量条件下多次测量同一量时,测量误差的大小和符号保持不变或按一定规律变化的误差;随机~:在同一测量条件下多次测量同一值时,误差的大小和符号以不可预见的方式变化着的~
12、发动机总成(气缸压力表);底盘总成(前束尺);量具与计量仪表(电解液密度计、高频放电叉)
13、检测站的类型:按服务功能分( 安全~维修~ 综合~);综合检测站按职能分(A级B级C级);安全~ :定期检测车辆中与安全和环保有关的项目,以保证汽车安全行驶,并将污染降低到允许的限度;维修~:从车辆使用和维修的角度,担负车辆维修前、后的技术状况检测;综合~:既能担负车辆管理部门的安全环保检测,又能担负车辆使用、维修企业的技术状况诊断,还能承接科研或教学方面的性能试验和参数测试;A级站:能全面承担检测站的任务;B 级站:能承担在用车辆技术状况和车辆维修质量的检测;C级站:能承担在用车辆技术状况的检测。
14、汽车资料输入及安全装置检查工位:本工位除将汽车资料输入登录微机并发给检测线主控制微机外,还进行汽车上部的灯光和安全装置等项目的外观检查,可简称为L工位。侧滑制动车速表工位:由侧滑检测、轴重检测、制动检测和车速表检测组成,简称 ABS工位。灯光尾气工位:主要由前照灯检测、排气检测、烟度检测和喇叭声级检测组成,简称HX~。车底检查工位简称P~,本工位是车辆底部的外观检查,由检测人员在地沟内人工检查底盘各装置及发动机的连接是否牢固可靠,有无弯扭断裂、松旷及漏油、漏水、漏气、漏电等现象。
15、轴制动力与轴荷的百分比=(左轮制动力+右轮~)/轴荷*100%
16、ABS工位检测程序:1)四轮汽车(后驱、后驻):侧滑—前制动—后制动—驻车制动—车速表2)四轮汽车(前驱、前驻):侧滑—前制动—驻车制动—车速表—后制动3)四轮汽车(前驱、后驻):侧滑—前制动—车速表—后制动—驻车制动。
17、示波器可显示电压随时间变化的波形,是一种多用途的汽车检测设备,可以用来显示电火系波形、电子元器件波形、柴油机高压油管波形和发动机异响波形等用途愈来愈广泛。它的基本功能是显示电压随时间的变化,除用于观察状态变化外,还可以检测电压、频率和脉冲宽度等
18、气缸密封性与气缸、气缸盖、气缸衬垫、活塞、活塞环和进排气门等零件的技术状况有关;气缸密封性的诊断参数主要有气缸压缩压力、曲轴箱漏气量、气缸漏气量、气缸漏气率及进气管真空度等。
19、气缸压力表检测条件:发动机运转至正常工作温度。用起动机带动带动已拆除全部火花塞或喷油器的发动机运转,其转速应符合原厂的规定。
诊断参数标准:发动机各气缸压力应不小于原设计规定值的85%,每缸压力与各缸平均压力的差,汽油机应不大于8%。柴油机不大于10%;大修竣工发动机的气缸压力应符合原设计规定,每缸压力与各缸平均压力的差,汽油机不超过8%,柴油机不超过10%
20、FA触点闭合后,先是产生二次闭合振荡,尔后二次电压由一定负值逐渐变化到零
21 、发动机异响的类别:主要有机械异响,燃烧异响,空气动力异响和电磁异响等。(1)机械异响主要是运动副配合间隙太大后配合表面有损伤运动中引起冲击和振动造成的。(2)燃烧异响主要是发动机不正常燃烧造成的。(3)空气动力异响主要是发动机在进气口、排气口行和运转中的风扇处,因气流振动而造成的。(4)电磁异响主要是发动机、电动机和某些电磁器件内,由于磁场的交替变化,引起机械中某些部件或某一部分空间产生振动而造成的。发动机的异响的影响因素有转速、温度、负荷和润滑条件;汽油机过热时,往往产生点火敲击声(爆燃或表面点火);柴油发动机温度过低时,往往产生着火敲击声(工作粗暴)。
22、曲轴主轴承响:1)现象:汽车加速行驶或发动机突然加速时,发动机发出沉重而有力的“ 铛、铛、铛”或“刚、刚、刚”的金属敲击声,严重时机体发生很大振动,响声随发动机转速的提高而增大,随负荷的增加而增强,产生响声的部位在曲轴上与曲轴轴线齐平处,单缸断火时响声无明显变化,相邻两缸同时断火时,响声明显减弱或消失,温度变化时响声变化不明显,响声严重时,机油压力明显降低。2)原因:(1)曲轴主轴承盖固定螺钉松动;(2)曲轴主轴承减磨合金烧毁或脱落(3)曲轴主轴承和轴颈磨损过甚、轴向止推装置磨损过甚,造成径向和轴向间隙过大(4)曲轴弯曲未得到校正,发动机装合时不得不将某些主轴承与轴颈的配合间隙放大(5)机油压力太低、黏度太小或机油变质。
23、曲轴连杆轴承响:1)现象:汽车加速行驶和发动机突然加速时,发动机发出“铛,铛。铛” 连续明显、轻而短促的金属敲击声(主要特征);连杆轴承严重松旷时,怠速运转也能听到明显的响声,且机油压力降低;发动机温度变化时,响声变化不明显;响声随发动机转速的提高而增大,随负荷的增加而增强,产生响声的部位在曲轴箱上部;单缸断火,响声明显减弱或消失,但复火时又重新出现,即具有所谓响声“上缸”现象。2)原因:(1)曲轴连杆轴承盖的固定螺栓松动或折断(2)曲轴连杆轴承减磨合金烧毁或脱落(3)曲轴连杆轴承或轴颈磨损过甚,造成径向间隙太大(4)曲轴内通连杆轴颈的油道堵塞(5)机油压力太大、黏度太小或机油变质
24、传动系游动角度,是离合器、变速器、万向传动装置、驱动桥的游动角度之和,也称为传动系总游动角度。检测方法有经验检查法和仪器检查法;仪器检测有指针式和数字式;指针式检测仪由指针、刻度盘、测量扳手组成,数字式由倾角传感器和测量仪组成;经验检测法检测步骤:用经验检测法检查传动系游动角时可分段进行,然后将各段涌动角度求和即可获得传动系总的游动角度。(1)离合器与变速器游动角的检查:离合区处于结合状态,变速器挂在要检查的档上,松开驻车制动器,然后在车下用手将变速器输出轴上的凸缘盘或驻车制动盘从一个极端位置转到另一个极端位置,两个极端位置之间的转角即为在该档下从离合器至变速器输出端的游动角度。依次挂入每一档,可获得各档下的这一游动角度。(2)万向传动装置游动角度的检查:支起驱动桥,拉紧驻车制动器,然后在车下用手将驱动桥凸缘盘从一个极端位置转到另一个极端位置,两极端位置之间的转角即为万向传动装置的游动角度。(3)驱动桥游动角的检查:松开驻车制动器,变速器置空档位置,驱动桥着地或处于制动状态,然后在车下将驱动桥凸缘盘从一个极端位置转到另一个极端位置,两极端位置之间的转角即为驱动桥的游动角度。以上三段即为传动系的游动角度。
25、倾角传感器其作用是将传感器外壳随传动轴游动之倾角转换为相应频率的电振荡。
26、游动角度参考:离合器与变速器<<=5~15度,驱动桥<<=55~65度,万向传动装置<<=5~6度,传动系<<=65~86度。
27、转向盘自由行程过大:1)现象:汽车静止,两前轮保持直线行驶位置不动,轻轻来回转动转向盘,感到游动角很大;2)原因:(1)转向盘与转向轴的连接松旷(2)转向盘内主、从啮合部位松旷或主、从动部分的轴承松旷(3)转向器垂臂轴与垂臂的连接松旷(4)纵、横转向拉杆的球头连接松旷(5)纵、横转向拉杆臂与转向节的连接松旷(6)转向节与主销配合松旷(7)轮毂轴承松旷
28、转向沉重:1)现象:汽车行驶中驾驶员向左、右转动转向盘时,感到沉重费力,无回正感;汽车低速转弯或掉头时,转动转向盘更加费力;2)原因(1)轮胎气压不足(2)转向器主动部分轴承预紧力太大或从动部分(垂臂轴)与衬套配合太紧(3)转向器主、从动部分啮合调整太紧(4)转向器无油或缺油(5)转向节与主销配合太紧或缺油(6)转向节止推轴承缺油或损坏(7)纵、横转向拉杆的球头连接调整太紧或缺油(8)与转向盘连接的转向轴弯曲或其套管凹瘪,造成刮碰(9)主销后倾过大、内倾过大或前轮负外倾(10)前梁、车架变形,造成前轮定位失准
29、自动跑偏:1)现象:汽车行驶中自动跑向一边,必须用力把住转向盘才能保持直线行驶2)原因:(1)两前轮轮胎气压不等、直径不一或车厢装载不均(2)两前轮轮毂轴承或轮毂油封的松紧度不一(3)两前轮外倾角、主销后倾角、主销内倾角不等或前轮前束在两前轮上分配不均(4)左右钢板弹簧挠度不等或弹力不一(5)前梁、后桥轴管或车架发生水平平面的弯曲(6)车架两边的轴距不等(7)前后桥两端的车轮有单边制动或单边制动拖滞现象(8)前轮前束太小或负前束(9)路面拱度太大或有侧向风
30、车轮定位的检测,包括转向轮(通常是前轮)定位的检测和非转向轮(通常为后轮)定位的检测。转向轮和非转向轮定位的检测,也即前轮和后轮定位的检测,统称为四轮定位的检测。前轮定位包括前轮外倾、前轮前束、主销后倾和主销内倾,是评价汽车前轮直线行驶稳定性、操控稳定性、前轴和转向系技术状况的重要诊断参数,后轮定位主要有后轮外倾和后轮前束,可用来评价后轮的直线行驶稳定性和后轴的技术状况
31、静态检测法;是在汽车静止的状态下,根据车轮旋转平面与各车轮定位间存在的直接或间接的几何关系,用专用检测设备对车轮定位进行几何角度的测量。使用的检测设备一般有气泡水准式、光学式、激光式、电子式和微机式等前轮定位仪或四轮定位仪;动态检测法:是在汽车以一定车速行驶的状态下,用检测设备检测车轮定位产生的侧向力或由此引起的车轮侧滑量。
32、气泡水准车轮定位仪按适用车型范围可分为两种:一种适用于大、中、小型汽车,另一种适用于小型汽车。前者一般由水准仪、支架、转盘(又称转角仪)等组成;后者一般由水准仪和转盘组成。转盘一般由固定盘、活动盘、扇形刻度尺、游标指示针、锁止销和若干滚珠等组成,滚珠装于固定盘与活动盘之间。
33、前轮最大转角的检测:是指前轮处于直线行驶位置时,分别向左、右转向至极限位置的角度。由于有些汽车转向器和纵拉杆布置在车架的一侧,为防止轮胎碰擦,因而向左、右的最大转角是不相等的。检测方法如下:(1)找正前轮直线行驶位置后,置转盘扇形刻度尺于零位并固定之(2)转动转向盘使前轮向任一侧转至极限位置,从扇形刻度尺上读出并记录转角值,并与原厂规定值对照。不符合要求的前轮最大转角,可通过调整转向节上的限位螺钉,直至符合要求为止(3)转动转向盘使前轮向另一侧转至极限位置,用上述同样的方法可测得另一侧的前轮最大转角值,并视必要调整之。
34、四轮定位仪可检测的项目包括:前轮前束、前轮外倾、主销后倾、主销内倾、后轮前束、后轮外倾、轮距、轴距、后轴推力角和左右轴距差
35、转向盘自由转动量,是指汽车转向轮保持直线行驶位置静止时,轻轻左右晃动转向盘所测得的游动角度。转向盘的转向力,是指在一定行驶条件下,作用在转向盘外缘的圆周力。
诊断参数标准:1)转向盘自由转动量:机动车转向盘的最大自由转动量从中间位置向左或向右的转角均不得大于。(1)最大设计车速大于或等于100km/h的机动车为10度(2)最大设计车速小于100km/h的机动车(三轮农用运输车除外)为15 度(3)三轮农用运输车为22.5度;2)转向盘转向力:机动车在平坦、硬实、干燥和清洁的水泥或沥青道路上行驶,以10km/h的速度在5s之内沿螺旋线从直线行驶过度到直径为24m的圆周行驶,施加于转向盘外缘的最大切向力不得大于245N
36、车轮动不平衡:即使静平衡的车轮,即重心与旋转中心重合的车轮,也可能是动不平衡
37、车轮不平衡的原因:1)轮毂、制动鼓(盘)加工时轴心定位不准、加工误差大、非加工面铸造误差大、热处理变形、使用中变形或磨损不均2)轮毂螺栓质量不等、轮毂质量分布不均或径向圆跳动、端面圆跳动太大3)轮胎质量分布不均、尺寸或形状误差太大、使用中变形或磨损不均、使用翻新胎或垫、补胎4)并装双胎的充气嘴未相隔180度,单胎的充气嘴未与不平衡点标记相隔180安装5)轮毂、制动鼓、轮胎螺栓、轮辋、内胎、衬带、轮胎等拆卸后重新组装成轮胎时,累计的不平衡质量或形位偏差太大,破坏了原来的平衡。
38、车轮平衡机的类型:按功能分为车轮静平衡机和车轮动平衡机;按测量方式分离车式和就车式~;按车轮平衡机转轴的形式分软式和硬式车轮~
39、用就车式车轮平衡机检测车轮静不平衡的原理:支离地面的车轮如果不平衡,转动时产生的上下振动通过转向节或悬架传给检测装置的传感磁头、可调支杆和底座内的传感器。传感器变成的电信号控制频闪灯闪光,以指示车轮不平衡点位置,并输入指示装置只是不平衡度。当传感磁头传递向下的力时频闪灯就发亮,所照射的车轮最下部的点即为不平衡点。当不平衡点的质量越大时,传感器的受力也越大,变换的电量也越大,指示装置指示的数值也越大。
40、用就车式车轮平衡机检测车轮动不平衡的原理和静不平衡原理相同,只不过传感器磁头固定在制动地板上,检测的是横向振动。横向振动通过传感器磁头、可调支杆传至底座内的传感器,传感器转变成的电信号控制频闪灯闪光,以指示车轮不平衡点位置,并输入到指示装置指示车轮不平衡度。
41、车轮动平衡机的平衡重也称配重,通常有卡夹式和粘帖式两种类型
42、制动跑偏:1)现象:汽车行车制动时,车辆行驶方向发生偏斜;汽车紧急制动时,车辆出现扎头或甩尾现象。2)原因:(1)左右车轮制动蹄摩擦片材料不一或新旧程度不一(2)左右车轮制动蹄摩擦片与制动鼓的靠合面积不一、靠合位置不一或制动间隙不一(3)左右车轮制动轮缸的技术状况不一,造成起作用时间不一或张开力大小不一(4)左右车轮制动蹄回位弹簧拉力不一……………..
43、驱动车轮输出功率的检测,即底盘测功。底盘测功的目的。一是为了获得驱动车轮的输出功率或驱动力,以便评价汽车的动力性;二是用获得的驱动车轮输出功率与发动机飞轮输出功率进行对比,求出传动效率,以便判定底盘传动系的技术状况
44、底盘测功试验台的类型:按测功装置中测功器形式不同,分为水力式、电力式和电涡流式;按测功装置中测功器冷却方式分为风冷式、水冷式和油冷式;按滚筒装置承载能力分为小型(~3T》)、中型(3~6)、大型(6~10)和特大型式(10~)
45、车用油耗计一般由传感器和计量显示仪表,二者采用电缆线连接,分为容积式(膜片式、量管式和活塞式)和质量式。四活塞式车用油耗计的传感器由流量测量机构和信号转换机构组成
46、安装方法:将油耗计传感器串接在燃料系供油管路上:化油器式汽油机应串接在汽油泵与化油器之间;柴油机应串接在柴油滤清器与柴油泵之间,从高压回油管和低压回油管流回的燃料应接在油耗计传感器与喷油泵之间,以免重复计量;电控燃油喷射发动机应串接在燃油滤清器与燃油分配管之间,从燃油压力调节器经回油管流回燃油箱应改接在油耗计传感器与燃油分配管之间,避免重复计量。
47、气体分离器简图;当混有气体的燃油进入气体分离器浮子室时,气体会迫使浮子室内的油平面下降,使针阀打开,气体排入大气,从出油管进入传感器的燃油便没有气体了,使测量精度提高。
48、侧滑试验台是测量汽车前轮横向滑动量并判断是否合格的一种检测设备,有滑板式有滚筒式之分。侧滑试验台检测侧滑量的主要目的是为了确知前轮前束和车轮外倾的配合是否恰当。滑板试验台就是利用上述滑动板在侧向力作用下能够横向滑动的原理来测量前轮侧滑量的。前轮外倾(或负外倾)对滑动板的作用,不管车辆前进还是后退,其侧滑量相等且侧滑方向一致;前轮前束(或负前束)对滑动板的作用,在车辆前进和后退时,虽侧滑量相等但侧滑方向相反。
49、按国家标准用侧滑试验台检测前轮侧滑量,其值不超过5m/km;机动车可以用制动距离、制动减速度和制动力检测制动性能,其中其中之一符合要求,即判为合格
50、检测后轴技术状况;除一部分汽车的后轮也有前束和外倾外,相当一部分汽车的后轮是没有定位的。可用侧滑试验台按下列方法检测后轴是否弯曲变形和轮毂轴承是否松旷。1)使汽车后轮从侧滑试验台滑动板上前进和后退驶过,如两次侧滑量读数均为零,表明后轴无任何弯曲变形2)如两次侧滑量读数不为零,且前进和后退驶过侧滑板后,侧滑量读数相等而侧滑方向相反,表明后轴在水平平面内发生弯曲a若前进时滑动板向外滑动,后退时又向内滑动,说明后轴端部在水平平面内向前弯曲b若前进时滑动板向内滑动,后退时又向外滑动,说明后端部在水平平面内向后弯曲3)如两次侧滑量读数不为零,且前进和后退驶过侧滑板后,侧滑量读数相等而侧滑方向相同,表明后轴在垂直平面内放生弯曲a若滑动板向外滑动,说明后轴端部在垂直平面内向上弯曲b若滑动板向内滑动,说明后轴端部在垂直平面内向下弯曲4)后轮多次驶过侧滑试验台滑动板,每次读数不相等,说明轮毂轴承松旷
51、制动减速度按测试、取值和计算方法的不同分为制动稳定减速度、平均减速度和充分发出的平均减速度。对于路试检验制动性能采用充分发出的平均减速度FMDD这一评价指标
52、路试法的缺点:(1)路试法只能测出整车的制动性能,而对于各轮制动性能的差异虽能从拖、压印作出定性分析,但无法获得定量数据。(2)对于制动性能不合格的车辆,不一诊断故障发生的具体部位。(3)制动距离的长短和制动减速度的大小,往往因为驾驶员操作方法、路面状况和车马行人状况而异,重复性差。(4)除道路条件外,路试还将受到气候条件等的限制。且又发生事故的危险(5)路试法消耗燃料、磨损轮胎,且对全车各部机件都有不良影响。由于试验台检测制动性能具有迅速经济、安全、不受外界自然条件地限制,以及试验重复性好和能定量地指示出各轮的制动力或制动距离等优点,因而广泛使用。
53、制动试验台的类型:按试验台测量原理不同分为反力式和惯性式,按试验台支承车轮形式不同分为滚筒式和平板式,按试验台检测参数不同分为测制动力式、测制动距离式和多功能式,按试验台测量装置至指示装置传递信号方式不同分为机械式、液力式和电力式,按试验台同时能测车轴数不同分为单轴式、双轴式和多轴式
54、反力式滚筒制动试验台的测量装置由测力杠杆、测力传感器和测力弹簧等组成:驱动装置由电动机、减速器和链传动等组成。
55、制动协调时间是指在急踩制动时,从踏板开始动作至车辆减速度(或制动力)达到规定的车辆充分发出的平均减速度75%时所需的时间

5. 自由锻件在结构上有什么要求

毕业设计 锻件的结构设计与工艺性分析,正文共60页,19436字,附开题报告、答辩文稿、外文翻译、设计图纸。
摘 要
目前国内外的锻造方法主要的仍然是自由锻和模锻,工业发达国家的模锻大大超过自由锻。因为模锻生产率高,锻件尺寸精度高,材料利用率高,纤维组织沿锻件轮廓分布,故力学性能好,故强度高,耐冲击抗疲劳。如果能结合胎膜锻、型砧锻,其经济效益会显著提高,“锻压”是人类发明的最古老的生产技术之一,也是机械制造业中重要的技术之一。它包含了锻造和冲压技术,以及与之相关的塑性变形技术。锻造作为金属加工的主要方法和手段,因此锻造工艺是发展趋势,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命,锻件是机器中负重载荷的零件,特别适合结构尺寸小而载荷大或受疲劳载荷的零件。不懂锻件设计就有可能违反锻造原理和锻造结构工艺性,轻则延长零件的生产周期锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件的外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命,增加制造困难,增加成本;重则可能无法把您设计的零件锻造出来。本设计将通过对各种锻件的具体案例的结构设计及其工艺性进行分析,把握锻件的结构设计及其工艺性的制造规律,并通过其规律的把握,达到灵活运用制造技术,合理设计零件结构及其工艺的目的。
关键词:自由锻;模锻;锻造工艺;胎膜锻;结构

目 录
摘 要 I
Abstract II
前 言 1
第1章 绪论 3
1.1 目前锻件的应用 3
1.2 目前国内外发展概况和发展趋势 4
第2章 锻件的结构设计及工艺性分析 5
2.1 对锻造零件结构工艺性的要求 5
2.2 锻件组织特点 5
2.3 锻件的结构工艺性 5
2.3.1自由锻件的结构工艺性 5
2.3.2 模锻件的结构工艺性 9
第3章 锻件的结构设计错误示例及其改进 12
3.1 模锻件的分模位置问题 12
3.1.1 上下对称锻件的分模位置不应选在上平面或下平面 12
3.1.2 倾斜锻件不宜采用折线分模 13
3.1.3 左右对称的锻件,分模面不宜选在过度截面上 14
3.1.4 高度小于或者等于台阶直径的圆饼类锻件,不宜轴向分模 15
3.1.5 头部较大的轴类锻件不宜直线分模 16
3.2 模锻件的模锻斜度问题 17
3.2.1 模膛内侧不能与分模面垂直 17
3.2.2 同一锻件的内模斜度不应比外模斜度小 18
3.2.3 同一锻件上不宜出现多种模锻斜度 20
3.2.4 分模面两侧的模锻斜度不能相互错开 21
3.3 零件上过于复杂的部分不要锻出,应合理设计余块 21
3.3.1 对于有凸缘的锻件 22
3.3.2对于有难成形的复杂形状的锻件 23
3.3.3 对于零件相邻台阶直径相差不大的锻件 25
3.4 需增设定位块的锤上模锻件 26
3.5 模锻件连皮的问题 27
3.5.1 冲孔连皮不能太薄,也不宜太厚 27
3.5.2 锻件内孔较大时,不宜用平底连皮 28
3.5.3 锻件上的小孔不宜锻出连皮, 只进行压凹 29
3.6 对于法兰较薄的锻件,在锻件两侧各增加一块工艺凸台敷料 31
3.7 合理确定锻件的分合 32
3.7.1 单拐曲线两件合锻 32
3.7.2 轴套类零件两件合锻 33
3.7.3 复杂模锻件的分锻 34
3.7.4 有骤变横截面模锻件的分锻 35
3.8 合理确定锻件的凸肩 36
3.8.1 凸肩与锻件直径相差不大时不宜锻出凸肩 36
3.8.2 高度过小的凸肩不要锻出 37
3.9 自由锻件结构应力求简单 38
3.9.1 自由锻件应尽量避免有锥形和斜度平面 38
3.9.2 自由锻件应避免两曲面或曲面与棱柱面交接 40
3.9.3 自由锻件应避免加强筋 41
3.9.4 自由锻件不允许在基体上或在叉件内侧有凸台 42
3.9.5 大型锻件台阶余面的重量不能忽视,锻造设备不能选择过大,也不能选择太小 43
3.10 孔径小于30mm的孔,不宜锻出 45
3.11 模锻件应尽可能直接模锻成形 46
3.12 加大连接板的厚度 47
3.13 复杂锻件应成对称形状,可使模具和夹具通用 48
3.14 合理选择锻件上的倒圆半径 49
3.15 不能忽视预锻成型 50
3.16 平锻机上终锻成形时的冲孔芯料不能太薄 51
3.17 合理安排毛刺、飞边的位置 52
第4章 结论 54
参 考 文 献 55
致 谢 56