㈠ SPSS中的多元方差分析与一元方差分析
看p值,就整体而言认为你的组与组之间的因变量的总体均值向量有差异。就是你的组与组的均值不同。ppv课学习网站。
㈡ SPSS多元方差分析结果的表,请问错在哪里
交互效应和单独一个因素的效应地位是不相同的
按照惯例 如果交互作用不显著确实没有必要列出来,但是单因子的主效应即使不显著也要列出来,因为它是作为一个因子本身存在的,而交互作用只是隐含的。
另外同样的,如果交互作用显著了,那你的单因素分析也会变得没有意义,不需要列出来的。
㈢ spss 多元方差分析
按照你的意思,需要采用重复测量的方差分析
㈣ 多元分析的分析方法
包括3类:①多元方差分析、多元回归分析和协方差分析,称为线性模型方法,用以研究确定的自变量与因变量之间的关系;②判别函数分析和聚类分析,用以研究对事物的分类;③主成分分析、典型相关和因素分析,研究如何用较少的综合因素代替为数较多的原始变量。 是把总变异按照其来源(或实验设计)分为多个部分,从而检验各个因素对因变量的影响以及各因素间交互作用的统计方法。例如,在分析2×2析因设计资料时,总变异可分为分属两个因素的两个组间变异、两因素间的交互作用及误差(即组内变异)等四部分,然后对组间变异和交互作用的显著性进行F检验。
优点
是可以在一次研究中同时检验具有多个水平的多个因素各自对因变量的影响以及各因素间的交互作用。其应用的限制条件是,各个因素每一水平的样本必须是独立的随机样本,其重复观测的数据服从正态分布,且各总体方差相等。 用以评估和分析一个因变量与多个自变量之间线性函数关系的统计方法。一个因变量y与自变量x1、x2、…xm有线性回归关系是指:
其中α、β1…βm是待估参数,ε是表示误差的随机变量。通过实验可获得x1、x2…xm的若干组数据以及对应的y值,利用这些数据和最小二乘法就能对方程中的参数作出估计,记为╋、勮…叧,它们称为偏回归系数。
优点
是可以定量地描述某一现象和某些因素间的线性函数关系。将各变量的已知值代入回归方程便可求得因变量的估计值(预测值),从而可以有效地预测某种现象的发生和发展。它既可以用于连续变量,也可用于二分变量(0,1回归)。多元回归的应用有严格的限制。首先要用方差分析法检验因变量y与m个自变量之间的线性回归关系有无显著性,其次,如果y与m个自变量总的来说有线性关系,也并不意味着所有自变量都与因变量有线性关系,还需对每个自变量的偏回归系数进行t检验,以剔除在方程中不起作用的自变量。也可以用逐步回归的方法建立回归方程,逐步选取自变量,从而保证引入方程的自变量都是重要的。 把线性回归与方差分析结合起来检验多个修正均数间有无差别的统计方法。例如,一个实验包含两个多元自变量,一个是离散变量(具有多个水平),一个是连续变量,实验目的是分析离散变量的各个水平的优劣,此变量是方差变量;而连续变量是由于无法加以控制而进入实验的,称为协变量。在运用协方差分析时,可先求出该连续变量与因变量的线性回归函数,然后根据这个函数扣除该变量的影响,即求出该连续变量取等值情况时因变量的修正均数,最后用方差分析检验各修正均数间的差异显著性,即检验离散变量对因变量的影响。
优点
可以在考虑连续变量影响的条件下检验离散变量对因变量的影响,有助于排除非实验因素的干扰作用。其限制条件是,理论上要求各组资料(样本)都来自方差相同的正态总体,各组的总体直线回归系数相等且都不为0。因此应用协方差分析前应先进行方差齐性检验和回归系数的假设检验,若符合或经变换后符合上述条件,方可作协方差分析。 判定个体所属类别的统计方法。其基本原理是:根据两个或多个已知类别的样本观测资料确定一个或几个线性判别函数和判别指标,然后用该判别函数依据判别指标来判定另一个个体属于哪一类。
判别分析不仅用于连续变量,而且借助于数量化理论亦可用于定性资料。它有助于客观地确定归类标准。然而,判别分析仅可用于类别已确定的情况。当类别本身未定时,预用聚类分析先分出类别,然后再进行判别分析。 解决分类问题的一种统计方法。若给定n个观测对象,每个观察对象有p个特征(变量),如何将它们聚成若干可定义的类?若对观测对象进行聚类,称为Q型分析;若对变量进行聚类,称为R型分析。聚类的基本原则是,使同类的内部差别较小,而类别间的差别较大。最常用的聚类方案有两种。一种是系统聚类方法。例如,要将n个对象分为k类,先将n个对象各自分成一类,共n类。然后计算两两之间的某种“距离”,找出距离最近的两个类、合并为一个新类。然后逐步重复这一过程,直到并为k类为止。另一种为逐步聚类或称动态聚类方法。当样本数很大时,先将n个样本大致分为k类,然后按照某种最优原则逐步修改,直到分类比较合理为止。
聚类分析是依据个体或变量的数量关系来分类,客观性较强,但各种聚类方法都只能在某种条件下达到局部最优,聚类的最终结果是否成立,尚需专家的鉴定。必要时可以比较几种不同的方法,选择一种比较符合专业要求的分类结果。 把原来多个指标化为少数几个互不相关的综合指标的一种统计方法。例如,用p个指标观测样本,如何从这p个指标的数据出发分析样本或总体的主要性质呢?如果p个指标互不相关,则可把问题化为p个单指标来处理。但大多时候p个指标之间存在着相关。此时可运用主成分分析寻求这些指标的互不相关的线性函数,使原有的多个指标的变化能由这些线性函数的变化来解释。这些线性函数称为原有指标的主成分,或称主分量。
主成分分析有助于分辨出影响因变量的主要因素,也可应用于其他多元分析方法,例如在分辨出主成分之后再对这些主成分进行回归分析、判别分析和典型相关分析。主成分分析还可以作为因素分析的第一步,向前推进就是因素分析。其缺点是只涉及一组变量之间的相互依赖关系,若要讨论两组变量之间的相互关系则须运用典型相关。 先将较多变量转化为少数几个典型变量,再通过其间的典型相关系数来综合描述两组多元随机变量之间关系的统计方法。设x是p元随机变量,y是q元随机变量,如何描述它们之间的相关程度?当然可逐一计算x的p个分量和y的q个分量之间的相关系数(p×q个), 但这样既繁琐又不能反映事物的本质。如果运用典型相关分析,其基本程序是,从两组变量各自的线性函数中各抽取一个组成一对,它们应是相关系数达到最大值的一对,称为第1对典型变量,类似地还可以求出第2对、第3对、……,这些成对变量之间互不相关,各对典型变量的相关系数称为典型相关系数。所得到的典型相关系数的数目不超过原两组变量中任何一组变量的数目。
典型相关分析有助于综合地描述两组变量之间的典型的相关关系。其条件是,两组变量都是连续变量,其资料都必须服从多元正态分布。
以上几种多元分析方法各有优点和局限性。每一种方法都有它特定的假设、条件和数据要求,例如正态性、线性和同方差等。因此在应用多元分析方法时,应在研究计划阶段确定理论框架,以决定收集何种数据、怎样收集和如何分析数据资料。
㈤ 多样本均数的方差分析的结果在论文中怎么用表格表示
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。
(2) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和表示,记作SSb,组间自由度dfb。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。
㈥ r多元方差分析summary.manova怎么解读
图中的F值是算出来的,是组间均方/组内均方的值,越大表示组间的差值越大。实际上方差分析还有一个临界值Fcrit,是根据自由度查表查出来的。F>Fcrit(0.05),就说明组间的差异大到一定程度了,组间的差异显著了。F>Fcrit,P<0.05,具体P值方差分析会计算出来的。一般看方差表就看P值是否小于0.05或者0.01,一般不会去对比分析F值的。图中Ala的各组间P=0.000<0.05,各组间存在显著性差异,其它同理。至于Ala中的56组数据间是如何差异的需要进一步分析。至于Ala,c,d从表上不确定是什么关系。