『壹』 求电气自动化专业毕业论文题目和内容
电气自动化在智能建筑中的应用
摘要]
[关键词]
随着我国国民经济的迅猛发展,高档智能化建筑已成为当今建筑的主流。文章就电气自动化在智能建筑中的应用谈一下自己的观点。
电气自动化智能建筑接地
一、TN-S系统
二、TN-C-S系统
三、交流工作接地
四、安全保护接地
五、屏蔽接地与防静电接地
六、直流接地
七、防雷接地
八、结束语
TN-S系统是把中性线N和保护接地线
PE严格分开的低压配电系统,是一个三相四
线加PE线的接地系统。中性线N与保护接地线
PE除在变压器中性点共同接地外,两线不再
有任何的电气连接。系统正常运行时,中性
线N带电,而PE线不带电。该接地系统具备安
全可靠的基准电位,PE线不允许断线,对地
没有电压,故设备金属外壳接在PE线上安
全、可靠。因此,TN-S系统可作为智能建筑
的电气接线系统。在智能建筑里,单相用电
设备较多,单相负荷比重较大,三相负荷通
常是不平衡的,因此在中性线N中带有随机电
流。另外,由于大量采用荧光灯照明,其所
产生的三次谐波叠加在N线上,加大了N线上
的电流量,如果将N线接到设备外壳上,会造
成电击或火灾事故;如果在TN-S系统中将
N线与PE线连在一起再接到设备外壳上,那么
危险更大,凡是接到PE线上的设备,外壳均
带电;会增加电击事故的范围;如果将N线、
PE线、直流接地线均接在一起除会发生上述
的危险外,电子设备将会受到干扰而无法工
作。因此智能建筑应设置电子设备的直流接
地,交流工作接地,安全保护接地及普通建
筑也应具备的防雷保护接地。此外,由于智
能建筑内多设有具有防静电要求的程控交换
机房、计算机房、消防及火灾报警监控室以
及大量易受电磁波干扰的精密电子仪器设
备,所以在智能楼宇的设计和施工中,还应
考虑防静电接地和屏蔽接地的要求。
TN-C-S系统由两个接地系统组成,第
一部分是TN-C系统,第二部分是TN-S系
统,分界面在N线与PE线的连接点。该系统一
般用在建筑物的供电由区域变电所引来的场
所,进户之前采用TN-C系统,进户处做重复
接地,进户后变成TN-S系统。TN-S接地系
统明显提高了人及物的安全性。同时只要我
们采取接地引线,各自都从接地体一点引
出,及选择正确的接地电阻值使电子设备共
同获得一个等电位基准点等措施,因此TN-
C-S系统可以作为智能型建筑物的一种接地
系统。
工作接地主要指的是变压器中性点或中
性线(N线)接地。N线必须用铜芯绝缘线。
在配电中存在辅助等电位接线端子,等电位
接线端子一般均在箱柜内。必须注意,该接
线端子不能外露;不能与其它接地系统,如
直流接地,屏蔽接地,防静电接地等混接;
也不能与PE线连接。在高压系统里,采用中
性点接地方式可使接地继电保护准确动作并
消除单相电弧接地过电压。中性点接地可以
防止零序电压偏移,保持三相电压基本平
衡,这对于低压系统很有意义,可以方便使
用单相电源。
安全保护接地就是将电气设备不带电的
金属部分与接地体之间作良好的金属连接。
即将大楼内的用电设备以及设备附近的一些
金属构件,用PE线连接起来,但严禁将PE线
与N线连接。
在现代建筑内,要求安全保护接地的设
备非常多,有强电设备,弱电设备,以及一
些非带电导电设备与构件,均必须采取安全
保护接地措施。当没有做安全保护接地的电
气设备的绝缘损坏时,其外壳有可能带电。
如果人体触及此电气设备的外壳就可能被电
击伤或造成生命危险。我们知道:在一个并
联电路中,通过每条支路的电流值与电阻的
大小成反比,即,接地电阻越小,流经人体
的电流越小,通常人体电阻要比接地电阻大
数百倍,经过人体的电流也比流过接地体的
电流小数百倍。当接地电阻极小时,流过人
体的电流几乎等于零。实际上,由于接地电
阻很小,接地短路电流流过时所产生的压降
很小,所以设备外壳对大地的电压是不高
的。人站在大地上去碰触设备的外壳时,人
体所承受的电压很低,不会有危险。加装保
护接地装置并且降低它的接地电阻,不仅是
保障智能建筑电气系统安全,有效运行的有
效措施,也是保障非智能建筑内设备及人身
安全的必要手段。
在现代建筑中,屏蔽及其正确接地是防
止电磁干扰的最佳保护方法。可将设备外壳
与PE线连接;导线的屏蔽接地要求屏蔽管路
两端与PE线可靠连接;室内屏蔽也应多点与
PE线可靠连接。防静电干扰也很重要。在洁
净、干燥的房间内,人的走步、移动设备,
各自磨擦均会产生大量静电。例如在相对湿
度10~20%的环境中人的走步可以积聚3.5万
伏的静电电压,如果没有良好的接地,不仅
仅会产生对电子设备的干扰,甚至会将设备
芯片击坏。将带静电物体或有可能产生静电
的物体(非绝缘体)通过导静电体与大地构
成电气回路的接地叫防静电接地。防静电接
地要求在洁静干燥环境中,所有设备外壳及
室内(包括地坪)设施必须均与PE线多点可
靠连接。智能建筑的接地装置的接地电阻越
小越好,独立的防雷保护接地电阻应≤10
Ω;独立的安全保护接地电阻应≤4Ω;独立
的交流工作接地电阻应≤4Ω;独立的直流工
作接地电阻应≤4Ω;防静电接地电阻一般要
求≤100Ω。
在一幢智能化楼宇内,包含有大量的计
算机、通讯设备和带有电脑的大楼自动化设
备。在这些电子设备在进行输入信息、传输
信息、转换能量、放大信号、逻辑动作及输
出信息等一系列过程中都是通过微电位或微
电流快速进行,且设备之间常要通过互联网
络进行工作。因此为了使其准确性高,稳定
性好,除了需有一个稳定的供电电源外,还
必须具备一个稳定的基准电位。可采用较大
截面的绝缘铜芯线作为引线,一端直接与基
准电位连接,另一端供电子设备直流接地。
该引线不宜与PE线连接,严禁与N线连接。
智能化楼宇内有大量的电子设备与布线
系统,如通信自动化系统、火灾报警及消防
联动控制系统、楼宇自动化系统、保安监控
系统、办公自动化系统、闭路电视系统以及
他们相应的布线系统。这些电子设备及布线
系统一般均属于耐压等级低、防干扰要求
高、最怕受到雷击的部分。不管是直击、串
击、反击都会使电子设备受到不同程度的损
坏或严重干扰。因此,智能化楼宇的所有功
能接地,必须以防雷接地系统为基础,并建
立严密、完整的防雷结构。
智能建筑多属于一级负荷,应按一级防
雷建筑物的保护措施设计,接闪器采用针带
组合接闪器,避雷带采用25×4(mm)镀锌扁
钢在屋顶组成≤10×10(m)的网格,该网格与
屋面金属构件作电气连接,与大楼柱头钢筋
作电气连接,引下线利用柱头中钢筋、圈梁
钢筋、楼层钢筋与防雷系统连接,外墙面所
有金属构件也应与防雷系统连接,柱头钢筋
与接地体连接,组成具有多层屏蔽的笼形防
雷体系。这样不仅可以有效防止雷击损坏楼
内设备,而且还能防止外来的电磁干扰。
电气自动化在智能建筑的应用在我国还
是一个新兴的技术领域,随着更多智能建筑
的出现,将有更加先进的技术补充到这一领
域中,使这一技术更加成熟、完善。
参考文献
[1]朱甫泉。论电气技术与智能建筑[J]建筑电气,
2005.4
[2]刘胜荣,史美芳,姜圣天。防雷技术在智能建筑
中的应用[J]智能建筑电气技术,2008.3
『贰』 电气自动化专业毕业论文题目
1. PLC控制花样喷泉.doc 2. S7-200PLC在数控车床控制系统中的应用
3. PLC控制五层电梯设计 4. 超高压水射流机器人切割系统电气控制设计
5. 基于PLC的恒压供水系统设计 6. 西门子PLC交通灯毕业设计
7. 双恒压供水西门子PLC毕业设计 8. 世纪星组态 PLC控制自动配料系统毕业论文
9. 三菱梯形图PLC控制四层电梯 10.三菱PLC五层电梯控制
11.全自动洗衣机西门子PLC控制 12.欧姆龙PLC控制交通灯
13.基于PLC电机故障诊断系统设计 14.双恒压无塔供水系统plc设计毕业论文
15.工业用洗衣机的PLC控制 16.PLC在配料生产线上的应用 毕业论文
17.变频调速恒压供水系统 18.PLC电梯控制毕业论文
19.基于PLC电梯控制设计 20.基于PLC中断技术的集选电梯控制系统实现
21.自动送料装车系统PLC控制设计 22.简易电梯控制模型的设计与实现.doc
23.PLC在数控机床中的应用 24.机械手PLC控制设计
25.PLC控制锅炉输煤系统 26.PLC控制自动门的课程设计
27.基于PLC的三层电梯控制系统设计 28.交流变频调速PLC控制电梯系统设计毕业论文
29.PLC控制的自动售货机毕业设计论文
30.PLC在变电站变压器自动化中的应用
31.PLC在电网备用自动投入中的应用
305022336
『叁』 大专,电气自动化专业的,毕业论文选个什么题目好写点啊,给我几个题目好吗
电气工程中自动化技术的专业研究
关于电类专业毕业设计指导模式的研究
浅谈电气工程及其自动化专业实践教学的创新模式
尽量写一个方向里的小点,不要把题目取得太大,太大不容易写好,以上仅供参考
『肆』 电气自动化专业本科论文课题
目 录
摘 要…………………………………………………0
1. 设计说明…………………………………………2
1.1 主接线…………………………………………2
1.2CT、PT配置……………………………………2
2主要保护原理及整定……………………………3
2.1发电机纵差动保护……………………………3
2.1.1保护原理……………………………………3
2.1.2整定内容……………………………………4
2.2发电机定子匝间保护…………………………5
2.3发电机过激磁保护……………………………7
2.4发电机失磁保护………………………………8
2.5发电机反时限负序过流保护…………………10
2.6发电机逆功率保护………………………………13
2.7发电机两点接地…………………………………13
2.8主变压器差动保护………………………………14
2.9变压器复合电压过流保护………………………17
参考文献………………………………………………18
1 设计说明
1.1主接线
300MW 发电机―变压器组主要保护原理设计,适用于发电机―变压器组采用单元接线,高压侧接入500kV 11/2接线系统;发电机出口侧无断路器;励磁方式为静态励磁系统;
在发电机出口侧引接―台高压厂用工作变压器(采用三相分裂线圈)。
接地方式:发电机中性点为经配电变压器(二次侧接电阻)接地;主变压器高压侧中性点为直接接地;高压厂用分裂变压器6kV侧中性点为中阻接地系统。
1.2 CT、PT配置
发电机的出线侧和中性点侧各装设4组CT;
主变压器高压侧套管上装设3组CT;
高压厂用变压器高压侧套管上(或封闭母线内)装设4组CT;
发电机差动保护与主变压器差动保护,当CT不够分配时,允许共用发电机出线侧的一组CT;
发电机一变压器组差动保护中,其中的一臂是差接在高压厂用变压器低压侧的CT上;
发电机一变压器组差动保护装置,不接入励磁变压器的CT,其差动范围为:从500kV侧CT到发电机中性点CT及高压厂用变压器低压侧CT;
CT的二次电流:500kV侧选用1A;其它各侧可为1A或5A。
发电机出线侧设有2组PT,其中1组可供匝间保护用(一次侧中性点不直接接地);2组PT均要求设有3个二次线圈。主变压器高压侧设1组PT(三相)。
2 主要保护原理及整定计算
2.1发电机纵差动保护
2.1.1保护原理
变数据窗式标积制动原理
∣IT-IN∣2≥KbITINcosφ
其中:iT――发电机机端电流
iN――发电机中性点电流
φ――iT、iN之间的相角差
标积制动原理的动作量和比率差动保护一样。在区外发生故障时,该原理的表现行为和比率制动原理也完全一样。但在区内发生故障时,由于标积制动原理的制动量反应电流之间相位的余弦,当相位大于90度,制动量就变为负值,负值的制动量从概念上讲即为动作量,因此可极大地提高内部故障发生时保护反应的灵敏度。而比率制动原理的制动量总是大于0的。
动作逻辑方式1:循环闭锁方式
原理:当发电机内部发生相间短路时,二相或三相差动同时动作。根据这一特点,在保护跳闸逻辑上设计了循环闭锁方式。为了防止一点在区内另外一点在区外的两点接地故障的发生,当有一相差动动作且同时有负序电压时也出口跳闸。
2.1.2 整定内容(假定:TA二次额定电流为5(A))
1) 比率制动系数K
整定差动保护的比率制动系数。标积制动原理的Kb和K有一理论上的对应关系,装置自动完成它们之间的转换,对用户仍然整定K。无单位。一般:K=0.3-0.5
2) 启动电流lq
整定差动保护的启动电流。单位(A)。一般lq=0.6-2.0(A)
3) TA断线解闭锁电流定值(仅保护方式Ⅱ有效)lct
当发电机差电流大于该定值时,TA断线闭锁功能自动退出。单位(倍)
它是以电流互感器的二次额定电流为基准的。一般:lct=0.8-1.2(倍)
4) 差动速断倍数lsd
当发电机差电流大于该定值时,无论制动量多大,差动均动作。单位:(倍)
它是以电流互感器的二次额定电流为基准的。一般:lsd=3-8(倍)
5)负序电压定值(仅保护方式Ⅰ有效)U2.dz
当负序电压达该定值,允许一相差动动作出口跳闸。单位(V)。一般:U2.dz=4-10(V)
6)TA断线延时定值tct
经该定值时间延时发TA断线信号。单位:秒。
2.2 发电机定子匝间保护
2.2.1 原理
反应发电机纵向零序电压的基波分量。“零序”电压取自机端专用电压互感器的开口三角形绕组,此互感器必须是三相五柱式或三个单相式,其中性点与发电机中性点通过高压电缆相联。“零序”电压中三次谐波不平衡量由数字付氏滤波器滤除。
为准确、灵敏反应内部匝间故障,同时防止外部短路时保护误动,本方案以纵向“零序”电压中三次谐波特征量的变化来区分内部和外部故障。
为防止专用电压互感器断线时保护误动作,本方案采用可靠的电压平衡继电器作为互感器断线闭锁环节。
本保护能在一定负荷下反应双Y接线的定子绕组分支开焊故障。
保护分两段:
Ⅰ段为次灵敏段:动作值必须躲过任何外部故障时可能出现的基波不平衡量,保护瞬时出口。
Ⅱ段为灵敏段:动作值可靠射过正常运行时出现的最大基波不平衡量,并利用“零序”电压中三次谐波不平衡量的变化来进行制动。保护可带0.1-0.5秒延时出口以保证可靠性。
保护引入专用电压互感器开口三角绕组零序电压,及电压平衡继电器用2组PT电压量。
2.2.2 整定内容
1) 次灵敏段基波“零序”电压分量定值Uh 单位(V)
2) 灵敏段基波“零序”电压分量定值U1 单位(V)
3)额定负荷下“零序”电压三次谐波不平衡量整定值U3wn 单位(V)
4)灵敏段三次谐波增量制动系数K2 单位:(无)
5)灵敏段延时Tzj 单位:(秒)
2.2.3 整定计算
1)Uh
次灵敏段“零序”电压基波分量定值(整定范围1-10V)
动作值按躲过任何外部故障时可能出现的基波不平衡量整定
Uh=KUo•bp•max
式中:Uh=KUo•bp•max――外部短路故障时可能出现的“零
序”电压最大基波不平衡量。
K――可靠系数,可取2-2.5
2)U1
灵敏段“零序”电压基波分量定值(整定范围0.1-5V)
动作值按可靠躲过正常运行时出现的最大基波不平衡量整定
U1=KUo•bp•n
式中:U1=KUo•bp•n――额定负荷下固有的“零序”电压基
波不平衡量,由实测得到(本机有监测软件)。
K――可靠系数,可取1.5-2
3)U3wn
额定负荷下“零序”电压三次谐波不平衡量整定值(整定
范围1-10V)
开始可整定4(V),开机后由实测得到准确直,然后整定。
4)
灵敏段三次谐波增量制动系数(整定范围0-0.9)
由经验决定。一般取0.3-0.5
5)Tzj
灵敏段延时(整定范围0-1秒)
为增加此段可靠性而设。一般取0.1-0.2秒。
2.3 发电机(变压器)过激磁保护
原理
发电机(变压器)会由于电压升高或者频率降低而出现过励磁,发电机的过励磁能力比变压器的能力要低一些,因此发变组保护的过盛磁特性一般应按发电机的特性整定。
过激磁保护反应过激磁倍数而动作。过激磁倍数定义如下:
B U/f U*
N= = =
Be Ue/fe f*
其中:U、f――电压、频率
Ue、fe――额定电压、额定频率
U*、f *――电压、频率标么值
B、Be――磁通量和额定磁通量
过激磁电压取自机端TV线电压(如UAB电压)。
出口方式Ⅰ:定时限方式
定时限t1发信或跳闸
定时限t2发信或跳闸
U/f> t1/o 发信或跳闸
t2/o 发信或跳闸
出口方式Ⅱ:反时限方式
定时限发信
反时限发信或跳闸
反时限曲线特性由三部分组成:a)上限定时限;b)反时限;c)下限定时限。
当发电机(变压器)过激磁倍数大于上限整定值时,则按上限定时限动作;如果倍数超过下限整定值,但不足以使反时限部分动作时,则按下限定时限动作;倍数在此之间则按反时限规律动作.
2.4发电机失磁保护
2.4.1原理
失磁保护由发电机机端测量阻抗判据、转子低电压判据、变压器高压侧低电压判据、定子过流判据构成。一般情况下阻抗整定边界为静稳边界圆,但也可以为其它形状。
当发电机须进相运行时,如按静稳边界整定圆整定不能满足要求时,一般可采用以下三种方式之一来躲开进相运行区。
a) 下移阻抗圆,按异步边界整定
b) 采用过原点的两根直线,将进相区躲开。此时,进相深度可整定。
c) 采用包含可能的进相区(圆形特性)挖去,将进相区躲开。
转子低电压动作方程
Vfd<Vfl.dz Vfd<Vfl.dz
Vfdo
Vfd< (P-Pt) 当Vfd<Vfl.dz
Kf×SN
其中:Vfd――转子电压
Vfl.dz――转子低电压动作值
Vfdo――发电机空载转子电压
Sn――发电机额定功率
Kf――转子低电压系数
P――发电机出力
Pt――发电机反应功率
2.4.2保护的整定计算
1)高压侧低电压 Uhi•dz
按照系统长期允许运行的低电压整定。
2)阻抗圆心 -Xc
以静稳圆整定,也可按异步圆整定。
3)阻抗圆半径 -Xr
以静稳圆整定,也可按异步圆整定。
4)转子低电压Vfl•dz
转子低电压可按发电机空载励磁电压的0.2-0.5倍整定。
5)转子低电压判据系数Kf
转子低电压系数,用于整定转子电压动作曲线斜率。单位(元)
Kk
Kf = 式中,Xd∑=Xd+Xs
Xd∑
若实际基准为Vfd[0],P[0],与装置假定值Vfd0=125V, SN=866VA相差较大时,可修正Kf
125 P[0]
[整] = Kf
866 Vfd[0]
Xs为升压变压器及系统等值电抗之和(标么)
Kk=1.1为可靠系数,Xd为发电机电抗(标么)
5)反应功率Pt
考虑凸极效应。单位(W)
1 1 1
Pt = ( - )SN,式中:Xd∑=Xd+Xs, Xd∑=Xq+Xs
2 Xq∑ Xd∑
Xd及Xq分别为发电机d轴和q轴电抗(标么),SN为二次基准功率。
7)定子过流lg•dz
可按发电机过载异步功率整定。单位(A)。一般lg•dz=1.05 le
8)动作时间t1
整定保护的延时动作时间。单位(S)
9)动作时间t2
整定保护的延时动作时间。单位(S)
10)动作时间t3
整定保护的延时动作时间。单位(S)
2.5发电机反时限负序过流保护
2.5.1保护原理
保护反应发电机定子的负序电流大小。保护发电机转子以防表面过热。
保护由二部分组成:负序定时限过负荷和负序反时限过流。
电流取自发电机中性点(或机端)TA三相电流。
反时限曲线特性由三部分组成:a)上限定时限;b)反时限;c)下限定时限。
当发电机负序电流大于上限整定值时,则按上限定时限动作;如果负序电流超过下限整定值,但不足以使反时限部分动作时,则按下限定时限动作;负序电流在此之间则按反时限规律动作。
负序反时限特性能真实地模拟转子的热积累过程,并能模拟散热,即发电机发热后若负序电流消失,热积累并不立即消失,而是慢慢地散热消失,如此时负序电流再次增大,则上一次的热积累将成为该次的初值。
反时限动作议程:
(I22-K22)t≥K21
其中:I2――发电机负序电流标么值
K22――发电机发热同时的散热效应
K21――发电机的A值
出口方式:可发信或跳闸
2.5.2保护的整定计算
1) 定时限负序过负荷电流定值I2•ms•dz
按发电机长期允许的负序电流下能可靠返回的条件整定。
2) 定时限负序过负荷动作时间ts
按躲后备保护的动作延时整定。
3)反时限负序过流启动定值I2•m•dz
按保护装置所能提供的最大跳闸时间确定(通常为1000秒),据此发电机能承受的负序电流整定。此值一般应接近于负序过负荷保护的动作电流。
4)反时限负序过流速断定值I2•up•dz
按躲过主变压器高压侧两相短路的条件整定。
5)散热系数K22
一般按发电机长期允许的负序电流标么值整定。
K22=(I2∝/ Ie)2
当发电机实际额定电流为Ie,与CT二次额定电流IN相差较大时,需折算
le
K22[整] =( )2 K22
lN
le
K21[整] =( )2 K21
lN
其中:l2∝-发电机长期允许的负序电流
le-发电机额定电流
6)热值系数 K21
按发电机A值整定
7)长延时动作时间t1
按l2•m•dz电流能够承受的时间整定(一般1000秒)。
8)速断动作时间tup
当与其它保护在动作时间的配合上出现矛盾时,应兼顾保护的选择性和灵敏性要求。
2.6发电机逆功率保护
保护原理
逆功率保护用于保护汽轮机,当主汽门误关闭,或机组保护动作于关闭主汽门而出口断路器未跳闸时,发电机将变为电动机运行,从系统中吸收有功功率。此时由于鼓风损失,汽机尾部叶片有可能过热,赞成汽机损坏。因此一般不允许这种情况长期存在,逆功率保护可很好地起到保护作用。在大型发电机组上一般为可靠装设二套独立的逆功率保护。
逆功率保护反应发电机从系统吸收有功的大小。逆功率受TV断线闭锁。
电压取自发电机机端;电流取自发电机中性点(或机端)TA。
出口方式:可发信或跳闸
P<-P1.dz t1/o 发信或跳闸
t2/o 发信或跳闸
2.7 发电机转子两点接地保护
反应定子电压中二次谐波的“正序”分量,此分量是由转子绕组不对称匝间短路时含二次谐波的磁场以同步转速正向旋转而在定子绕组中生成。保护受一点接地保护闭锁,发生一点接地时保护自动投入。
保护经入机端三相电压。
8.6.1 整定内容
1) 二次波电压动作值Uido 单位:(V)
2) 保护动作延时Tido 单位:(S)
8.6.2 整定计算方法
1)Uid
二次谐波电压动作值(整定范围0-10V)
Uld=Kk×Ubpn
Ubpn为额定负荷下二次谐波电压实测值;Kk为可靠系数,可取2.5-3
2)Lld
保护动作延时(整定范围0.1-2秒),为增加可靠性而设。
2.8主变压器(发变组、厂变、高备变)差动保护
保护原理
变压器差动保护采用有二次谐波制动的比率差动原理,并使用了变数据窗快速算法。
比率制动原理
∣I1+I2∣≥KMax{I1,I2}(二侧差动)
∣I1+I2+I3∣≥KMax{I1+I2+I3}(三侧差动)
其中:I1――第一侧电流
I2――第二侧电流
I3――第三侧电流
K――制动系数
Max(x,y)――取x,y中最大值
变数据窗算法原理
所谓变数据窗算法是指差动保护能够在故障刚开始发生且故障采样数据量较少时自适应地提高保护的制动曲线,随着故障的进一步发展、计算精度的进一步提高,能逢动降低制动特性曲线,以其与算法精度完全相配套。这种自适应的制动曲线,最终的(也是最精确的)是用户整定的特性。采用这一算法可以大大提高严重内部故障时的动作速度,同时丝毫不会降低轻微故障时的灵敏度。
出口方式
原理:任一相差动保护动作即出口跳闸。这种方式另外配有TA断线检测功能。在TA断线时瞬时闭锁差动保护,并延时发TA断线信号。TA断线可根据需要投退运行。保护的
8.7.2 整定内容(假定TA二次额定电流为5(A))
1) 比率制动系数 K
整定差动保护的比率制动系数。单位(无)一般:K=0.4-0.7
2) 二次谐波制动比
整定差动二次谐波制动比。单位(无)。一般:
Nec=0.12-0.24
3) 启动电流 lq
整定差动保护的启动电流。(归算到低压侧)。单位(A)。一般:lq=1.0-3.0(A)
4) TA断线解闭锁电流定值 lct
当差电流大于该定值时,TA断线闭锁功能自动退出。单位:(倍)
它是以TA的二次额定电流为基准的。(装置内部默认为5(A)或1(A)
一般:lct=0.8-1.5(倍)。(归算到低压侧)
5) 速断电流 lsd
整定差动保护速断电流倍数。它是以TA的二次额定电流为基准的。(装置内部默认为lN5(A)或1(A))
单位(倍)。一般lsd=3.0-7.0(倍)(归算到低压侧)
6) 启动电流 lq
按躲过最大负荷电流条件下流入保护装置的不平衡电流整定。最小动作电流宜在0.2ls以上。
装置上一般以归算到低压侧(如发电机侧)电流来整定。
7) TA断线解闭锁电流定值 lct
按躲开变压器最大负荷电流整定。
该电流装置上一般以归算到低压侧(如发电机侧)电流来整定计算。
它是以TA的二次额定电流为基准的。
Ict =(1.2-1.3)If•max/(nL×Ict•e)
其中:If•max-变压器最大负荷电流
Ict•e-电流互感器二次额定电流
8) 速断电流 lsd
该电流装置上一般以归算到低压侧(如发电机侧)电流来整定计算。
它是以TA的二次额定电流为基准的。
如整定n倍额定电流,且TA二次额定电流为5(A):
则:lsd=n×le/(n1×5)(倍)
推荐n用4-8。
2.9 变压器复合电压过流保护
原理
保护反应变压器电压、负序电压和电流大小。
电流电压一般取自变压器的同一侧TA和TV
出口方式:可发信或跳闸。
整定内容
1) 电流定值lg•dz
整定电流。单位(A)
2) 低电夺定值U1•dz
整定低电压。单位(V)
3) 负序电压定值U2•dz
整定负序电压。单位(V)
4) 动作时间t1
整定保护的延时动作时间。单位(S)
5) 动作时间t2
整定保护的延时动作时间。单位(S)
参 考 文 献
[1]、<微型计算机原理及应用>郑学坚、周斌编著。清华大学出版社,1995年8月出版社。
[4]、Malvino A.P.Digital Computer Electronics. McGraw-Hill Publishing Co,1977.
[2]A.R.Van.C.Warington.Protective Relay,vo.I-II.1974.
[3]、Committee Report, Tvansient Respponse of Current Tvansformers.I.E.E.E.PAS,1977.NO6.
[4]、马长贵主编<高压电网继电保护原理>水利电力出版社,1988。
[5]、许正亚编<电力系统故障分析>水利电力出版社,1993。
[6]、西北电力设计院,<电力工程电气设计手册2>,水利电力出版社,1990
[7]、国家电力调度通信中心<电力系统继电保护实用技术问答>,中国电力出版社,1997、5
[8]、国家电力调度通信忠心<电力系统继电保护规定汇编>中国电力出版社,1997
[9]、山东省电力局文件<山东电力继电保护配置原则>1997。
[10]、东南大学,南京电力自动化设备总厂联合编制,<WFB2-01型微机发电机变压器组保护装置技术说明书>。1997、4、28
[11]、南瑞继电保护公司,戴学安,<微机继电保护原理及技术>
『伍』 电气工程及其自动化毕业论文题目
用PLC或单片机控制的交通灯,等等
『陆』 电气自动化论文题目
1. PLC控制花样喷泉.doc 2. S7-200PLC在数控车床控制系统中的应用
3. PLC控制五层电梯设计 4. 超高压水射流机器人切割系统电气控制设计
5. 基于PLC的恒压供水系统设计 6. 西门子PLC交通灯毕业设计
7. 双恒压供水西门子PLC毕业设计 8. 世纪星组态 PLC控制自动配料系统毕业论文
9. 三菱梯形图PLC控制四层电梯 10.三菱PLC五层电梯控制
11.全自动洗衣机西门子PLC控制 12.欧姆龙PLC控制交通灯
13.基于PLC电机故障诊断系统设计 14.双恒压无塔供水系统plc设计毕业论文
15.工业用洗衣机的PLC控制 16.PLC在配料生产线上的应用 毕业论文
17.变频调速恒压供水系统 18.PLC电梯控制毕业论文
19.基于PLC电梯控制设计 20.基于PLC中断技术的集选电梯控制系统实现
『柒』 电气自动化毕业论文题目选择 哪个好写
电气自动化毕业论文题目选择。
怎么说。。看你会写吗。。
有什么要求。