当前位置:首页 » 论文题目 » 数学学科教育硕士论文格式
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

数学学科教育硕士论文格式

发布时间: 2021-03-19 23:52:52

❶ 研究生论文格式怎样排版

论文封面及首页

1 封面及首页由我校图书馆统一制作,首页内容与格式与封面相同;

2 学校代码:填写学校代码;

3 研究生学号:填写研究生证号;无学生证的,填写姓名拼音大写和授予学位年份,例如:王立国2005年被授予学位,则填写WANGLIGUO2005;

4 分类号:按《中国图书资料分类法》一书填写(可到图书馆查询);

5 密级:根据实际情况和导师意见在“无、内部、秘密、机密、绝密”中选择其一填写;有保密要求不宜公开的论文由学生本人提出申请,经导师和学位评定分委员会同意后,提交研究生院学位办公室备案。保密期限一般不超过二年,保密期后自动承认使用授权声明,并予以公开;

6 论文题目:应能概括整个论文最重要的内容,简明、恰当,避免使用不常见的缩略词、字符、代号和公式等。中文题目一般不超过25个汉字,题名语意未尽,可用副题名补充说明;英文题目以反映中文题目内容为限,力求精练;用中文撰写的论文,中文题目居上,英文题目居下;用英文撰写的论文,英文题目居上,中文题目居下;

7 学科专业:以二级学科为准,可到我校研究生院主页“学科目录”中查询;

8 研究方向:以我校招生目录中的学科专业研究方向为准;

9 硕士学位类型:在“学历硕士、教育硕士、同等学力硕士、高校教师、‘两课’教师”中选择其一填写。

❷ 数学教育硕士论文范文在哪里下载呢

数学教育方面的论文在 轻风论文网 很多的哦,你可以参考下,如果还有不清楚的地方,可以 咨询下他们的在线辅导老师,我之前也是求助他们帮忙的,很快就给我了,当时还是 轻风论文的 王老师帮忙的,态度不错,呵呵,相对于一些小机构和个人要靠谱的多

这里还有些 资料,你参考下

数学教育的德育功能
世界各 国的基础教育都将数学课程列为最重要的基础 课程,其原因之一就在于数学教育具有德育功能,数学学科内容的特殊性决定 了它具有其它学科所不可替代的育人功能。数学教育能使学生形成理性的思维方式,陶冶思想情操,培养科学 创新精神,树立科学的世界观等等。但是数学教育的德育功能开发得还 很不够,不仅没有完善的理论 体系,甚至还存在认识上 的误区。本文试图寻求对数学德育功能的正确认识,对德育的心理结构 征进行了描述,结合数学 学科的性质特点,叙述了对数学教育 中的德育的理解,阐述了数学教育的 德育功能的表现形式和 特征,在此基础上,探求实现数 学教育的德育功能的途径,以 期对数学教学实践略具指导意义。
参考文献
[1] 曹一鸣. 数学教育中的科学人文精神[J]. 中学数学教学参考. 2011年05期
[2] 齐建华,王春莲. 论数学教育的德育功能[J]. 教育研究. 2011年05期
[3] 蔡上鹤. 面向21世纪的需要 全面提高学生素质——介绍新编高中《数学》(试验修订本)[J]. 数学通讯. 2006年01期

有什么不明白的上 轻风论文网 看看吧。

❸ 硕士研究生,学科教学(英语)毕业论文怎么写

一般硕士研究生毕业论文需提前一年准备,本身写硕士论文花费很多时间,有时间的写的话一般也得两三个月,没时间写的话半年都不一定能够写好,且一般是先准备开题,开题准备也需花大量时间来查询相关资料,文章完成后还有指导老师的反复修改,均需要时间,所以提前一年准备才不会导致慌了手脚;当然如果自己有时间写的话,还是自己写,如实在没时间写的话可以考虑找人帮忙,建议你搜索下这个网站(轻松无忧论文网)看是否能够帮你解决问题;据偶同事说这个网站信用不错;

❹ 数学教育硕士毕业论文怎么写,我是明年毕业的研究生

将整个论文课题项目分解,当然是先根据导师要求或者自己感兴趣、擅长的题目范围,先搜集整理资料,确定最终的题目,然后开题,正文,一步一步来,任何复杂的项目经过分解后都可以按部就班的来完成。写作过程中和导师保持经常联系,以避免过程中大的改动,那样就被动了

❺ 标准的数学论文的格式是什么顺便再给几个例文

楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.

http://ptc3.fjpt.cn.net/sxx/jingpin/teachersemail/paper/5-guojunmo.doc这里的一篇是偏向交作业的

下面一个是正式发表的双语版本

张彧典人工证明四色猜想 山西盂县党校数学高级讲师

用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。

最后特别感谢英国兰开斯特大学A.lehoyd、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。

附:论文

用“H·Z—CP“求解赫伍德构形

张彧典 (山西省盂县县委党校 045100)

摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。

关键词:H—CP Z—CP H·Z—CP

《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。
为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。
如图1所示:
四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。
在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。
现在具体确立赫伍德构形的不可避免集。
在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。
如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。
其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。
如图3:设图1中有C1-D2链、D1-C2链存在时。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。
如图4:设图1中有C1-D2链、B2-A2链存在时。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。
如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。
如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。
如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。
如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。
图9:设图8中有B2-A2链与A1-D1环相交。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。
如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。
对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:
若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。
若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。
下面从理论上证明图2—10组成的不可避免集的完备性。
在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:
B1-A2、B1-D2、B2-C2、B2-A2
B1-A2、B1-D2、B2-C2、D1-C2
C1-D2、B1-D2、B2-C2、B2-A2
C1-D2、B1-D2、B2-C2、D1-C2
而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:
A-B与C-D、A-C与B-D、A-D与B-C;
还有12组可相交组合:
A-B与A-C、A-D、B-C、B-D;
A-C与A-D、B-C、C-D ;
A-D与B-D、C-D;
B-C与B-D、C-D;
B-D与C-D。
我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。
到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。
参考文献:
〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71

附英文版

Using H·Z-CP Solves Heawood Configuration
Zhang Yu-dian
Yu Xian Party School, Yu Xian 045100, Shanxi, China

Abstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procere (abbreviated as H-CP) and Zhang Yu-dian clouring procere (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procere is found, which is named as H·Z-CP.

Key words: H-CP Z-CP H·Z-CP

Introce
Thesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this configuration.
For the convenience of discuss, the simplest Heawood configuration model is given in [1] as follows.
As shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is similar.
In this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s difference.
As follows, the detailed Heawood configuration’s inevitable sets is given.

Result
It is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is changed.
As shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):
Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C color.
As shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.
As shown in Fig.4, if there are C1-D2 chain and B2-A2 chain in Fig. 1:
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.
As shown in Fig.5, if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are formed.
Its solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A color.
As shown in Fig.6, if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in Fig.6.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C color.
As shown in Fig.7, if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. 7.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.
As shown in Fig.8, if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. 7.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.
As shown in Fig.8, if B2-A2 chain and A1-D2 loop is intersectant in Fig. 8.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A color.
In Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].
For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into being.
If Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into being.then B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is recing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).
If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is recing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).
The self-contained inevitable sets composed of Fig 2 to 10 will be proved as follows.
In the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:
B 1-A2、B 1-A2、B2-C2、B2-A2
B 1-A2、B 1-D2、B2-C2、D1-C2
C 1-D2、B 1-D2、B2-C2、B2-A2
C 1-D2、B 1-D2、B2-C2、D1-C2
There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:
A-B and C-D、A-C and B-D、A-D and B-C;
Otherwise there are 12 kinds of intersectant combinations:
A-B and A-C、A-D、B-C、B-D;
A-C and A-D、B-C、C-D ;
A-D and B-D、C-D;
B-C and B-D、C-D;
B-D and C-D。
Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant combinations.
By this time, correct coloring for Heawood configuration is solved. The procere which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu proof.

Bibliography:
〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71

❻ 求助数学教育硕士学位论文

改善数学提问方法 提高学生解题能力
http://ww2.tabobo.cn/soft/20/233/2008/150512316222.html
摘 要
问题是思考的载体,解题是思维过程的延续。因此以问题引导学生学习应当成为数学教学的一条基本原则。提出问题比解决问题更为重要几乎是人所周知的共识。尽管针对提问的研究有不少,针对的解题的研究更是铺天盖地,但是将两者联系起来研究的以前几乎没有。只是近期的杂志上有零星的文章出现,但也只是论述其它问题时偶尔带到一点。对于提问,很长一段时间内人们认为这是教学的艺术,只可意会,不可言传,这在一定程度上阻碍了课堂提问水平的发展。对于解题,人们认为它有章可循,有法可依的技巧,同样对解题水平的提高有一定的制约作用。本文拟将针对解题的提问提升一个层次,使它成为“有模式、有程序、可以复制”的科学方法。对于解题的提问近期的报刊杂志刊登的几乎都是清一色的“探究”式提问,把“讲授”式提问排斥在外。事实上,纯粹的“探究”或“讲授”都不可能产生良好的教学效果,还是“中庸之道”比较好。对于解题也是一样,单纯的“探究”也不能取得很好的效果,应该是把对问题的“探究”与方法类型的“识记”联合运用,使它们达到恰当的平衡,才能获得更好的解题效果,偏向任何一方都会使解题陷入困境。
本文的基本框架是:通过两个实验来揭示提问启发与解题思考的关系,从而得出用恰当合理的提问方式和提问顺序来指引解题的方法。通过成果应用来逐步修缮这种方法,使之变得更合理,更完善。本文的第一个实验是通过元认知提示语(探究中的一种)、割碎喂填式(界于探究和讲授之间,偏讲授)和优生依赖术(纯注入式,且是生灌生)三种提问方式对学生解题正确率、效率和心理感受三个方面的影响进行综合研究,得出针对解题的提问中,割碎喂填式的综合效果优于其它两种提问方式。第二个实验是通过一个具体的实例,把学生的真实解题思维过程的展现出来。通过本实验,得出了学生的实际思考过程趋近于先元认知提示语,再割碎喂填式的提问方式的提问过程。也就是学生的解题是从盲目搜寻解题突破口到按部就班地解答过渡的。其中偶尔也穿插一点零星的顿悟(思考形式与优生依赖术相类似)。得到上述两个结论后,将结论运用于成果应用的实验中。在应用的过程中又对上述成果及实施步骤进行了微调,甚至是修订。成果应用是基于解题基础上对学生自我提问的再一次研究,得出了在通读问题,并能合理再现问题情境的基础上,确立了从目标出发,通过目标,先用元认知提示语的思考方式寻找解题的方向与突破口,当方向和突破口选定后再用割碎喂填式思考方式通过对条件的分析、分解和变形,使之逐步向目标靠拢,直至完全重合,这样问题就被解决了,简言之就是通过目标寻找条件和方法。总之,本研究是从学生的解题出发,通过提问对解题的影响的研究又回到了学生的解题,形成一个循环过程。
本研究着眼于现实,既关注学生的发展,也关心教师的发展。从教学实际中来,又回到实际教学中去,为切实提高高中数学教学质量,提高教师(特别是本人)的教学水平和学生的解题水平做了一件比较实在的事。本文为如何上好高三数学习题课以及如何指导学生养成良好解题习惯,形成良好的思考秩序提供了理论依据和可操作的方法。当然本研究得到的结论不是包制百病的灵丹妙药,它也只是解题能力的培养和良好思维品质形成的一个方面。最后本文也反思了具体研究过程中存在的一些不足与局限,为后继研究提供了研究方向和相关课题。

关键字:数学提问、数学解题、解题能力、割碎喂填式、优生依赖术、元认知提示语

目 录
摘 要 I
Abstract III
第一章 问题提出 1
1.1 提高解题能力的必要性 1
1.2 常见数学解题障碍和解题教学困难 2
1.3 针对学生数学解题障碍已有的应对策略 4
1.4 研究方法与框架 6
第二章 理论基础 8
2.1 学习理论 8
2.2 教学理论 11
第三章 数学提问的策略与方法构建 12
3.1 对数学课堂提问的研究综述 12
3.2 数学提问和数学解题的界定 17
3.3 数学提问与解题的相互关系 22
3.4. 提高解题能力的提问策略与方法构建 23
第四章 实证研究 26
4.1 总的研究目的和研究构成 26
4.1 实证研究一 27
——关于三种单一提问方法的综合效果比较研究 27
4.3 实证研究二 63
——关于三种提问方法与解题思维吻合度的研究 63
4.4 联合型提问方式的实践与成果 87
第五章 总结、建议与反思 89
5.1 总结 89
5.2 建议 90
5.3 反思 93
致 谢 96
参考文献 97
附 录 100

❼ 小学数学教育硕士论文开题报告怎么写

开题报告是毕业论复文答制辩委员会对学生答辩资格审查的一个重要依据材料,以下是一篇关于数学教育硕士论文开题报告范文。一般来说,开题报告应该包括:选题背景、研究目的和意义、研究方法、研究涉及的主要理论、研究的主要内容及研究框架、写作提纲、主要参考文献等内容。

❽ 教育硕士论文的写作格式及要求

每个学校的格式要求都是不同的

你告诉我你哪个学校的

找我,我发格式给你

论文写作注意重点一、论文的理论框架。
论文的论点在阐述的时候一定要有一个理论框架,特别是硕士以上的论文,不可以只是一、二、三、四、五这样的罗列。
二、学会写标题。
好的论文标题应该是要简明扼要,并且全文标题风格一致,这也是在考验你的概括总结能力,所以要重视。
三、要重视摘要写作。
在看过一些学生的学术论文之后,发现很多学生不会写摘要,也许是不重视摘要写作所致?摘要对于论文非常重要:决定了编辑、评审人员是否会采用你的论文,读者是否会阅读你的论文。
四、论文要论才成文。
中学学写议论文的时候老师一再强调要有论点、论据。而且要观点鲜明有自己的独到见解最好,不要老是附和别人的观点。论文就是要表现自己的见解。
五、重视结论写作。
学生论文中往往不太重视最后的结论写作,大概是论文写到最后已经没什么新意或不在重视想快点结束了,所以草草收场。但是写论文结论正是训练人的大好时机,它可以很好的体现你的概述能力和敏锐的判断能力。 而且看的人一般很重视文章的开头和结尾。

首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。
第二就是内容的撰写。开题报告的主要内容包括以下几个部分:
一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。
二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”
三、课题研究的目的和意义。
课题研究的目的,应该叙述自己在这次研究中想要达到的境地或想要得到的结果。比如我校叶少珍老师指导的“重走长征路”研究课题,在其研究目标一栏中就是这样叙述的:
1、通过再现长征历程,追忆红军战士的丰功伟绩,对长征概况、长征途中遇到了哪些艰难险阻、什么是长征精神,有更深刻的了解和感悟。
2、通过小组同学间的分工合作、交流、展示、解说,培养合作参与精神和自我展示能力。
3、通过本次活动,使同学的信息技术得到提高,进一步提高信息素养。
四、课题研究的方法。
在“课题研究的方法”这一部分,应该提出本课题组关于解决本课题问题的门路或者说程序等。一般来说,研究性学习的课题研究方法有:实地调查考察法(通过组织学生到所研究的处所实地调查,从而得出结论的方法)、问卷调查法(根据本课题的情况和自己要了解的内容设置一些问题,以问卷的形式向相关人员调查的方法)、人物采访法(直接向有关人员采访,以掌握第一手材料的方法)、文献法(通过查阅各类资料、图表等,分析、比较得出结论)等等。在课题研究中,应该根据自己课题的实际情况提出相关的课题研究方法,不一定面面俱到,只要实用就行。
五、课题研究的步骤。
课题研究的步骤,当然就是说本课题准备通过哪几步程序来达到研究的目的。所以在这一部分里应该着重思考的问题就是自己的课题大概准备分几步来完成。一般来说课题研究的基本步骤不外乎是以下几个方面:准备阶段、查阅资料阶段、实地考察阶段、问卷调查阶段、采访阶段、资料的分析整理阶段、对本课题的总结与反思阶段等。
六、课题参与人员及组织分工。
这属于对本课题研究的管理范畴,但也不可忽视。因为管理不到位,学生不能明确自己的职责,有时就会偷懒或者互相推诿,有时就会做重复劳动。因此课题参与人员的组织分工是不可少的。最好是把所有的参与研究的学生分成几个小组,每个小组通过民主选举的方式推选出小组长,由小组长负责本小组的任务分派和落实。然后根据本课题的情况,把相关的研究任务分割成几大部分,一个小组负责一个部分。最后由小组长组织人员汇总和整理。
七、课题的经费估算。
一个课题要开展,必然需要一些经费来启动,所以最后还应该大概地估算一下本课题所需要 的资金是多少,比如搜集资料需要多少钱,实地调查的外出经费,问卷调查的印刷和分发的费用,课题组所要占用的场地费,有些课题还需要购买一些相关的材料,结题报告等资料的印刷费等等。所谓“大军未动,粮草先行”,没有足够的资金作后盾,课题研究势必举步维艰,捉襟见肘,甚至于半途而废。因此,课题的经费也必须在开题之初就估算好,未雨绸缪,才能真正把本课题的研究做到最好。

❾ 求数学教育专业毕业论文范文

提高本科毕业生数学教育论文质量,首先在激发学生数学教育科研动机的基础上,发展数学教育的科研意识。论文的选题要有创新性、实践性、可行性,在论文写作的过程中培养学生的数学教育科研能力。本科生数学教育论文的标准应是再创性、整体性和规范性。 [关键词]数学教育本科生毕业论文科研意识 [作者简介]李静(1966-),男,河北张北人,廊坊师范学院数信学院数学系讲师,硕士,主要从事数学教育研究。(河北廊坊065000) [中图分类号]G642.477[文献标识码]A[文章编号]1004-3985(2008)06-0174-02 本科生毕业论文是培养大学生的创新能力、实践能力和创业精神的重要环节。师范院校数学系本科生适应就业需要,选择数学教育专业毕业论文较多。毕业论文指导要以学生就业需要为动机,以提高学生的数学教育专业能力和创新意识为目标,以“模仿—反思—初步创新”模式为科研训练过程,合理安排毕业论文的各个环节。 一、明确毕业论文工作目的 1.间接性目的。随着数学教师专业化,数学教育理论已成为数学教师专业知识结构的主要成分之一。无论是师范毕业生的就业面试,还是在职的中学数学教师的培训提高,数学教育理论的掌握越来越重要。论文指导教师发挥就业需要这一外在的、间接的动力作用,促使学生认真学习有关系统的数学教育理论知识,为做好毕业论文打好扎实的基础。 2.直接性目的。因为在校本科生缺乏中学数学教学的经历和经验,对于数学教育理论的学习只能了解记忆,很难进入思考阶段,以这样的知识储备状态,毕业论文的创新性水平不会太高。学生掌握了一定的数学教育理论知识后,教师要指导学生走进中学数学课堂,熟悉教学的各个方面,并对照自己中学受教育的经历,思考现行的中学数学教学,哪怕是微小的触动,教师帮助其分析理论依据,诱导其深入思考教学实践,激发其对数学教育的真正兴趣,促进其较高水平地完成论文。 选择数学教育毕业论文的学生,在内外动机的作用下,通过理论知识的学习和中学数学实践的感悟,有针对性地对某个课题整理、总结,探讨解决数学教育中的一些问题,有助于学生高质量地对研究心得总结、反思、加工和表达。 二、培养数学教育的科研意识 本科生的数学教育科研意识是指对数学教育问题的感知和参与研究的自觉要求。良好的科研意识是研究型人才不断成长的基本要求,鼓励本科生不能只满足于将来当教书匠,应成为研究型的专业教师。培养本科生的数学教育科研意识不妨从以下几方面着手:通过数学教育理论重要性的教育,逐步培养学生用数学教育的观点观察、发现和分析问题的自觉要求;督促学生走进中学数学教学实践,培养学生善于思考、提炼和分析当前数学教育的有关问题,形成自觉的心理倾向;在论文准备期间,理论学习和实践感悟后,在指导教师的启发引导下,培养学生善于总结数学教学的经验,能够有意识地运用有关数学、哲学、教育学、心理学的观点分析这些感悟经验,努力把经验上升为理论知识①。 本科生要学习和容纳不同流派的学术观点,虚心向数学教育第一线的实际工作者请教,调查、分析数学教学实践问题。本科生的科研意识的发展,绝不是靠一时一事可以实现的,应该贯穿于整个本科教育过程。作为毕业论文的应急之需,可以在毕业论文开始时以任务书形式提出课题要求;也可以在论文准备过程中,专题性地介绍相关领域进展,评价相关专家的研究特点;指导教师带领自己的学生参加教育见习和教育实习等,让学生在教学实践中学会发现问题、分析问题、解决问题,从而自觉地形成数学教育的科研意识;也可以通过论文评述、中期筛选等机制促进本科生的相互学习。 三、选定毕业论文课题 1.打好学科基础,开阔选题视野。师范院校数学系全日制的本科生有关数学教育的课程有数学基础、教育学和心理学基础、数学教学论基础。在选题前,指导教师应要求学生认真复习数学教育自身专业课程并且适当地布置一些复习思考题,帮助学生充分地理解有关数学教育的理论知识,为他们发现课题开拓宽阔空间,教师也要注意帮助学生领会新课程的理念,促进未来的中学教师更好地全面实施新课程。 2.参加中学数学教学实践,获得选题灵感。实践是产生科研课题的土壤。让学生有机会到中学数学教育第一线去进行实践,在实践中了解中学教育现状,发现有关问题,取得选题灵感。经过本科阶段的学习后,学生的数学知识和修养达到了中学数学教师专业要求,但将理论形态知识转化成实践形态知识还需在教师的导引下逐渐地对中学数学教学活动感悟、理解和把握。学生参与中学数学教学活动的兴趣是浓厚的,都想体验当真正老师的感受。要想让学生体验到真正的实践形态的数学教育知识,指导教师无论在见习、试讲或实习中,一定要帮助学生在观察活动中发现问题,在理论讲解中分析问题,在感悟思考中解决问题。作为指导老师,保护、引导这种闪光的火花很重要,它是优秀课题的雏形。这种数学教育的科研训练,对学生今后的发展意义重大。 3.提出选题原则,掌握选题分寸。本科生论文的选题原则主要是:创新性、实践性、可行性。创新是科学研究的灵魂,创新的标尺应该适度。对待数学教育论文选题,教师帮助学生在充分理解数学教育理论形态和实践形态知识后,发现或提出值得注意的新问题、新观点、新途径、新方法。要求学生所选的课题尽量来自中学数学教与学的实际有关问题,这些问题对学生有一定的吸引力,这些问题的研究也有助于学生的就业面试和工作。现在本科生的数学教育论文存在的问题主要有:课题空泛求全,论述不够全面深入;堆砌空洞的理论,没有自己的思考见解;观点落后,有悖于当代教育新理念;主题不明确,缺乏论证材料;难以调动评价者的兴趣等。为了提高本科生的论文选题质量,从历届学生的选题中选出有代表性的课题,包括教师平时的选题,作为学习选题的鲜活材料,通过点评,逐步纠正错误的认识,从而正确掌握学习原则。 4.做好开题的准备工作。在引导学生学习选题的基础上,学生尝试根据个人实际情况选题。为了选好课题,学生需从模仿别人文章选题,逐步地过渡到自己的独立思考,要相互切磋,纵横向交流。当学生征求教师有关选题的意见时,教师不必急于表态,可以提出一些问题发散他们的思维,个人是否具备解决该问题的条件,对于该问题你估计能有多大把握,教师帮助学生提出问题,并促使其不断反思其选题的意义等。学生的个人经历、兴趣和爱好存在较大的差异,他们应该根据个人的兴趣特长选题,我们要尊重学生的个人选择,以便充分发挥他们的优势。当然,教师也要提醒他们思考各种不同选题的利弊,在选题方面,教师的意见只起参考作用。为了帮助学生全面思考他们的课题研究工作,我们请有代表性的上届毕业生为每一届的本科生介绍自己的选题体会,对应届毕业生具有一定的示范作用。对于所有本专业的本科生认真地召开开题报告会,指导教师们对每一个学生的开题报告提出宝贵意见。 四、提升论文写作中的科研能力 1.对论文的不同类型的认识。数学教育论文的种类是多样的,按照不同的标准可以划分为不同的类型。指导教师找出不同类型的范文,通过讲解让学生明确:按照创新程度划分,可分为创新性论文和移植性论文;按成果产生的方式,可分为实验研究论文和调查研究论文;按照撰写论文的思维方式,可分为思辨性论文和实证性论文;按照对已有成果的整理方式,可分为综合性论文和评论性论文②。但是各类论文之间,有时没有严格的界限,学会移植别人成果,移植中可能还有自己的再创新;实验研究性论文往往又与调查研究性论文相结合;思辨性的论文有时又带有实证;方法的多样性、相容性正是数学教育研究的特点之一。学生在不断地学习各种类型范文的写作要领时,渐渐地形成自己的写作风格。 ||| [摘要]提高本科毕业生数学教育论文质量,首先在激发学生数学教育科研动机的基础上,发展数学教育的科研意识。论文的选题要有创新性、实践性、可行性,在论文写作的过程中培养学生的数学教育科研能力。本科生数学教育论文的标准应是再创性、整体性和规范性。 [关键词]数学教育本科生毕业论文科研意识 [作者简介]李静(1966-),男,河北张北人,廊坊师范学院数信学院数学系讲师,硕士,主要从事数学教育研究。(河北廊坊065000) [中图分类号]G642.477[文献标识码]A[文章编号]1004-3985(2008)06-0174-02 本科生毕业论文是培养大学生的创新能力、实践能力和创业精神的重要环节。师范院校数学系本科生适应就业需要,选择数学教育专业毕业论文较多。毕业论文指导要以学生就业需要为动机,以提高学生的数学教育专业能力和创新意识为目标,以“模仿—反思—初步创新”模式为科研训练过程,合理安排毕业论文的各个环节。 一、明确毕业论文工作目的 1.间接性目的。随着数学教师专业化,数学教育理论已成为数学教师专业知识结构的主要成分之一。无论是师范毕业生的就业面试,还是在职的中学数学教师的培训提高,数学教育理论的掌握越来越重要。论文指导教师发挥就业需要这一外在的、间接的动力作用,促使学生认真学习有关系统的数学教育理论知识,为做好毕业论文打好扎实的基础。 2.直接性目的。因为在校本科生缺乏中学数学教学的经历和经验,对于数学教育理论的学习只能了解记忆,很难进入思考阶段,以这样的知识储备状态,毕业论文的创新性水平不会太高。学生掌握了一定的数学教育理论知识后,教师要指导学生走进中学数学课堂,熟悉教学的各个方面,并对照自己中学受教育的经历,思考现行的中学数学教学,哪怕是微小的触动,教师帮助其分析理论依据,诱导其深入思考教学实践,激发其对数学教育的真正兴趣,促进其较高水平地完成论文。 选择数学教育毕业论文的学生,在内外动机的作用下,通过理论知识的学习和中学数学实践的感悟,有针对性地对某个课题整理、总结,探讨解决数学教育中的一些问题,有助于学生高质量地对研究心得总结、反思、加工和表达。 二、培养数学教育的科研意识 本科生的数学教育科研意识是指对数学教育问题的感知和参与研究的自觉要求。良好的科研意识是研究型人才不断成长的基本要求,鼓励本科生不能只满足于将来当教书匠,应成为研究型的专业教师。培养本科生的数学教育科研意识不妨从以下几方面着手:通过数学教育理论重要性的教育,逐步培养学生用数学教育的观点观察、发现和分析问题的自觉要求;督促学生走进中学数学教学实践,培养学生善于思考、提炼和分析当前数学教育的有关问题,形成自觉的心理倾向;在论文准备期间,理论学习和实践感悟后,在指导教师的启发引导下,培养学生善于总结数学教学的经验,能够有意识地运用有关数学、哲学、教育学、心理学的观点分析这些感悟经验,努力把经验上升为理论知识①。 本科生要学习和容纳不同流派的学术观点,虚心向数学教育第一线的实际工作者请教,调查、分析数学教学实践问题。本科生的科研意识的发展,绝不是靠一时一事可以实现的,应该贯穿于整个本科教育过程。作为毕业论文的应急之需,可以在毕业论文开始时以任务书形式提出课题要求;也可以在论文准备过程中,专题性地介绍相关领域进展,评价相关专家的研究特点;指导教师带领自己的学生参加教育见习和教育实习等,让学生在教学实践中学会发现问题、分析问题、解决问题,从而自觉地形成数学教育的科研意识;也可以通过论文评述、中期筛选等机制促进本科生的相互学习。 三、选定毕业论文课题 1.打好学科基础,开阔选题视野。师范院校数学系全日制的本科生有关数学教育的课程有数学基础、教育学和心理学基础、数学教学论基础。在选题前,指导教师应要求学生认真复习数学教育自身专业课程并且适当地布置一些复习思考题,帮助学生充分地理解有关数学教育的理论知识,为他们发现课题开拓宽阔空间,教师也要注意帮助学生领会新课程的理念,促进未来的中学教师更好地全面实施新课程。 2.参加中学数学教学实践,获得选题灵感。实践是产生科研课题的土壤。让学生有机会到中学数学教育第一线去进行实践,在实践中了解中学教育现状,发现有关问题,取得选题灵感。经过本科阶段的学习后,学生的数学知识和修养达到了中学数学教师专业要求,但将理论形态知识转化成实践形态知识还需在教师的导引下逐渐地对中学数学教学活动感悟、理解和把握。学生参与中学数学教学活动的兴趣是浓厚的,都想体验当真正老师的感受。要想让学生体验到真正的实践形态的数学教育知识,指导教师无论在见习、试讲或实习中,一定要帮助学生在观察活动中发现问题,在理论讲解中分析问题,在感悟思考中解决问题。作为指导老师,保护、引导这种闪光的火花很重要,它是优秀课题的雏形。这种数学教育的科研训练,对学生今后的发展意义重大。 3.提出选题原则,掌握选题分寸。本科生论文的选题原则主要是:创新性、实践性、可行性。创新是科学研究的灵魂,创新的标尺应该适度。对待数学教育论文选题,教师帮助学生在充分理解数学教育理论形态和实践形态知识后,发现或提出值得注意的新问题、新观点、新途径、新方法。要求学生所选的课题尽量来自中学数学教与学的实际有关问题,这些问题对学生有一定的吸引力,这些问题的研究也有助于学生的就业面试和工作。现在本科生的数学教育论文存在的问题主要有:课题空泛求全,论述不够全面深入;堆砌空洞的理论,没有自己的思考见解;观点落后,有悖于当代教育新理念;主题不明确,缺乏论证材料;难以调动评价者的兴趣等。为了提高本科生的论文选题质量,从历届学生的选题中选出有代表性的课题,包括教师平时的选题,作为学习选题的鲜活材料,通过点评,逐步纠正错误的认识,从而正确掌握学习原则。 4.做好开题的准备工作。在引导学生学习选题的基础上,学生尝试根据个人实际情况选题。为了选好课题,学生需从模仿别人文章选题,逐步地过渡到自己的独立思考,要相互切磋,纵横向交流。当学生征求教师有关选题的意见时,教师不必急于表态,可以提出一些问题发散他们的思维,个人是否具备解决该问题的条件,对于该问题你估计能有多大把握,教师帮助学生提出问题,并促使其不断反思其选题的意义等。学生的个人经历、兴趣和爱好存在较大的差异,他们应该根据个人的兴趣特长选题,我们要尊重学生的个人选择,以便充分发挥他们的优势。当然,教师也要提醒他们思考各种不同选题的利弊,在选题方面,教师的意见只起参考作用。为了帮助学生全面思考他们的课题研究工作,我们请有代表性的上届毕业生为每一届的本科生介绍自己的选题体会,对应届毕业生具有一定的示范作用。对于所有本专业的本科生认真地召开开题报告会,指导教师们对每一个学生的开题报告提出宝贵意见。 四、提升论文写作中的科研能力 1.对论文的不同类型的认识。数学教育论文的种类是多样的,按照不同的标准可以划分为不同的类型。指导教师找出不同类型的范文,通过讲解让学生明确:按照创新程度划分,可分为创新性论文和移植性论文;按成果产生的方式,可分为实验研究论文和调查研究论文;按照撰写论文的思维方式,可分为思辨性论文和实证性论文;按照对已有成果的整理方式,可分为综合性论文和评论性论文②。但是各类论文之间,有时没有严格的界限,学会移植别人成果,移植中可能还有自己的再创新;实验研究性论文往往又与调查研究性论文相结合;思辨性的论文有时又带有实证;方法的多样性、相容性正是数学教育研究的特点之一。学生在不断地学习各种类型范文的写作要领时,渐渐地形成自己的写作风格。 ||| 2.发挥师生的整体力量。指导教师的个人力量毕竟有限,指导工作难免考虑不周,往往存在某些局限性。每次学生的开题报告,教研室的全体教师都应参加,将开题报告的辩论过程变成相互学习与交流的过程,鼓励所有参加的学生发表自己的看法,开发学生的潜在能力。在撰写论文的过程中,学生要广泛地征求本教研室老师们的意见,这样有利于综合各方面的优势,也有利于对毕业论文进行更全面的评价认识。 3.提高中学数学教学活动的感悟力。我们安排本专业学生利用做论文的1/3的时间到中学参加教学实践,边教边学,了解中学情况,感悟数学教学的内在规律,学会寻找研究课题,做到教学、学习、科研和就业同步进行。例如,让学生了解中学数学教学常规要求的理论依据,了解中学教师利用非认知因素转化后进生的根据等,触动学生从理论到实践的深入思考。我们认为学生在数学教学实践活动中学习最有效。通过一系列的教学实践活动,他们走进了数学教育的前列,找到了科研的感觉,逐步掌握了科研的基本要领,培养了自己的数学教育初步科研能力,从而为学位论文的研究和写作打下了坚实的基础。 五、把握数学教育论文的评价 1.再创性标准。不同对象在不同情景中可能得到不同的创新水平:原创水平、再创新水平、部分再创性水平、少许新意水平。由于师范本科生的水平所限,还没有发现原创水平和再创新水平的论文,只有很少的学生达到部分再创新水平的标准(即对再创新成果进行移植、修改、补充、推广和评价),部分学生能达到少许新意水平的标准(即论文的内容、构思等局部方面有少许新见解、新体会、新加工)。多数学生的论文创新性水平不高,只在模仿的基础上,略有思考。对于创新要求应该适度,如果要求文章的整体内容立意新颖,或者要求文章的全部或主体部分是创新的成果,这个标准对于在校本科生来说是不现实的。我们以为把部分再创新水平作为共同努力的方向,而少许新意水平应作为学士生论文的一般要求,能够模仿别人、理解理论和有所感悟的水平应该作为学士生论文的最低要求。鼓励学生的论文尽量涉及数学教育的热点问题和重点问题。 2.整体性标准。首先,论文要紧扣主题展开,各个部分都应该为主题服务,形成一个和谐的整体结构,一些学生离开主题发表议论,论文不能达到学士学位的要求。其次,从整体上把握论文各部分的地位,主次分明,重点部分和关键部分必须予以较深阐述,次要部分就不必唆。最后,各部分之间过渡自然,应该相互配合得当,形成一个有机整体,如果部分间对立或矛盾,就犯了“自打嘴巴”的毛病。 3.规范性标准。教师指导学生修改完论文后,将论文成果表示成学术形态。摘要、关键词、参考文献等要符合学术论文的要求。语言要简洁、说理清楚、层次分明、符合逻辑。所展示的各类图表及数据要清晰、翔实、规范,能够正确运用统计方法说明某些结论。 本科生的数学教育毕业论文在创新水平和独立工作的程度上,在说明理论依据和阐述问题的深度上,有一定不可回避的局限性。从数学教育专家知识结构可以看出,数学教育研究除了具有精深的数学基础,要有扎实的数学教育理论形态知识,更需要丰富的数学教育实践形态知识,经过各种知识间的相互作用于研究课题,久而久之,形成了较强的本领域的科研本领③。本科生既缺乏系统的数学教育理论形态知识,又缺乏数学教育实践活动体验,提升学生这方面的科研能力,首先需要从方法上考虑学生的数学教育理论的系统学习,相应地在时间上保证学生有机会参与中学数学教学实践活动,做到两种学习活动相互促进。 (摘抄)