Ⅰ 牛顿对经典力学的贡献
在天文学方面,牛顿可以称为近代伟大天文学家。他的杰出贡献是制作了反射式望远镜,反射式望远镜的制造成功,是天文学史上的一项重大革新。自伽利略发明第一架天文望远镜以来,人们对于宇宙的认识范围迅速扩展,但是当时流行的伽利略、开普勒等人发明和制造的折射望远镜,口径有限,制造大型望远镜不但困难,而且太庞大,同时折射望远镜的折射色差和球差都很大,这些大大限制了天文观测的范围。牛顿由于了解了白光的组成,因而于1668年设计制成了第一架反射式望远镜。这种望远镜能反射较广光谱范围的光而无色差,容易获得较大的口径,同时对球差也有校正。这样牛顿为现代大型天文望远镜的制造奠定了基础。
牛顿在天文学上的另一重要贡献是对行星的运动规律进行了全面考察,特别是对开普勒等人的学说进行过系统的研究。1686年他在给哈雷的信中说明了天体可以按照质点处理并证明了开普勒的行星运动的椭圆形轨道以及彗星的抛物线轨道。牛顿还进一步发展了自己的理论,认为行星都由于自转而使两极扁平赤道突出,还预言地球也是这样的球体。由于地球不是正球体,牛顿就指出,太阳和月球的引力摄动将不会通过地球中心,因此地轴将作一缓慢的圆锥运动,这便出现了二分点的岁差现象。对于潮汐现象,牛顿也作出了解释,他认为这是太阳和月球引力造成的。
英国物理学家、数学家、天文学家,经典物理学的创始人。1642年12月25日生于林肯夏郡沃斯索普村一个农民家庭。牛顿在出生前3个月父亲便去世了。3岁时母亲改嫁,他由外祖母抚养。1654年牛顿开始读小学,后在舅父的资助下进入格兰山姆镇皇家中学。1661年进入剑桥大学三一学院。1663年,三一学院创办自然科学讲座,牛顿成为了数学家伊萨克枣巴罗(Isaac Barrow, 1630-1677)教授的学生,1664年成为巴罗的助手。1665年获文学学士学位,1665年至1667年为躲避瘟疫回到家乡。1667年牛顿又回到剑桥大学,并被选为选修课的教研员。1668年3月任专修课教研员,同年获硕士学位。1669年巴罗辞去职务,以让牛顿晋升为数学教授。1670年牛顿又担任了卢卡斯讲座教授。1672年他被选为皇家学会会员,此后一直在剑桥大学工作。1689年被选为代表剑桥大学的国会议员。1696年他被任命为造币厂督办,迁居伦敦。1699年担任了造币厂厂长。1701年牛顿辞去剑桥大学教授职位,退出三一学院。1703年被选为皇家学会会长。1705年受封勋爵,成为贵族。1727年3月20日逝世于肯新顿村,终年85岁,终生未娶。
牛顿是科学发展史上举世闻名的巨人。他奠定了近代科学理论基础,是以正确的思维方法指导科学研究的代表。他是一位自强、勤奋的“天才”,为世界自然科学的发展作出了不可磨灭的贡献,成为近代科学的象征。他的科学贡献代表了当时新生资产阶级的利益,因为他为他的国家作出了巨大贡献,死后葬于威斯敏斯特教堂。
少年时期的牛顿,便显示出了出众的才能。他所精心制作的许多小机械,如风车、风筝、滴漏时钟、日圭仪等,引起了多人的注重和好评。牛顿的一生大部分时间从事科学实践、教学和理论的研究。从1672年他发表第一篇论文起,一生写出了多部极其著名的著作,如1686年写成,1687年出版的《自然哲学的数学原理》、1704年出版的《光学》等,在科学史上都具有重要价值。他在数学、物理学、天文学等多方面创造了惊人的奇迹。在数学方面,牛顿是微积分的创始人之一,同莱布尼兹一道名垂千古。1665年,牛顿在23岁时便发现了“二项式定理”和“流数法”,“流数法”就是现代所说的微分法。同时他还发现了流数法反演,即积分法。微积分的创立,是近代数学史上的一次重大变革,是真正的变量数学,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
在物理学方面,牛顿取得了力学、热学、光学等多方面的巨大成就。牛顿是经典力学理论的开创者。他在伽利略等人工作的基础上,进行了深入研究,经过大量的实验,总结出了运动三定律,创立了经典力学体系。牛顿所研究的机械运动规律,首先是建立在绝对时空观基础之上的。绝对化的时间和绝对化的空间是指不受物体运动状态影响的时间和空间。在两个匀速运动状态下的观察者,对机械运动具有相同的测量结果。在高速运动状态下,这种时空观已不能采用,这时(运动速度与光速可以比拟),牛顿力学将被相对论力学所代替。在微观情况下,由于粒子的波动性已明显表现出来,牛顿力学将被量子力学所代替。牛顿在力学方面另一巨大贡献是在开普勒等人工作的基础上,发现了万有引力定律。牛顿认为:太阳吸引行星,行星吸引卫星,以及吸引地面上一切物体的力都是具有相同性质的力。牛顿用微积分证明了,任何一曲线运动的质点,如果半径指向静止或匀速直线运动的点,且绕次点扫过与时间成正比的面积,则此质点必受指向该点的向心力的作用,如果环绕的周期之平方与半径的立方成正比,则向心力与半径的平方成反比。牛顿还在力学发展中,首先确定了一系列的基本概念,如质量、动量、惯性和力等。经过牛顿的工作,力学已形成了严密、完整、系统的科学体系。
在热学方面,牛顿确立了冷却定律。他指出:当物体表面与周围存在温度差时,单位时间内从单位面积上散失的热量与这一温度差成正比。
在光学方面,牛顿同样取得了巨大成果。牛顿是白光组成的最早发现者,1666年他利用三棱镜进行了著名的色散实验,发现白光可以分解为多种颜色的光谱带。同时他还作出了多色光合成白光的实验。牛顿对各色光的折射率进行了精确分析,说明了色散现象的本质。他指出,由于物质对不同颜色光得折射率和反射率不同,才造成了物体颜色的差别,从而揭开了颜色之谜。对于光的本性,牛顿提出了光的“微粒说”。他的观点一定程度上反映了光的本质。他认为,光是由微粒形成,并且走的是快速的直线运动路径。应用光的微粒说可以很好地解释光的反射和折射现象,但对于衍射现象却无能为力。微粒说是关于光的本性的重要理论之一,他同惠更斯的波动说共同构成了关于光的两大基本理论。现代科学证明,任何物质都具有波粒二象性。牛顿在光学方面还有许多发现和研究成果。如1666年他制作了牛顿色盘;1675年曾利用凸透镜和平板玻璃观察到了一种干涉图样,称为牛顿环等。他对牛顿环进行过精细的测量,但是没有能够作出满意的解释。此外牛顿还研究制成了多种光学仪器,在天文观测中有广泛的应用。
牛顿的哲学思想基本属于自发的唯物主义思想。他承认时间、空间的客观存在,但却把它们看成是与运动着的物质相脱离的。他所提出的形而上学的绝对时空观,虽然在解决宏观低速下运动物体的运动规律时能很好的适用,但在离开宏观低速的条件时,便无能为力了。
牛顿对于宇宙的解释也是和笛卡儿等人一样,承认神是“第一推动力”,后来的牛顿可以说完全陷入了唯心主义。他的全部成就几乎都是在45岁以前取得的,尤其集中在23岁以前。以后的四十年中则完全陷入了对神学的研究,他在神学方面的研究手稿竟有1,500,000字之多
Ⅱ 牛顿在物理学方面的贡献是什么100字左右
牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书(在1687年出版)。牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。
Ⅲ 牛顿在物理学方面的突出贡献是什么这一成就有什么特点
牛顿最大的贡献是建立了牛顿三大定理:
第一定理是惯性定理,第二个是加速度定理,第三个事相互作用力定律。
当然还有伟大的万有引力公式(苹果砸出来的那个)~
故他所建立的力学体系是仅限于低速(相对于光速而言),宏观(相对于粒子而言),微重力。并且由于牛顿的时代局限性,他在后期研究了神学~在对于圆周运动的解释上他便采用了第一推动力(现为切线加速度)这一概念,即上帝让圆周运动产生了最初的加速度~
希望对你有用~
Ⅳ 牛顿在物理方面的成就有哪些
力学和引力
牛顿自己的《原理》副本,并带有为第二版所作的修正。1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。
《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。
由于《原理》的成就,牛顿得到了国际性的认可,并为他赢得了一大群支持者:牛顿与其中的瑞士数学家尼古拉·法蒂奥·丢勒建立了非常亲密的关系,直到1693年他们的友谊破裂。这场友谊的结束让牛顿患上了神经衰弱。
光学
牛顿1672年使用的6英寸反射式望远镜复制品,为皇家学会所拥有。从1670年到1672年,牛顿负责讲授光学。在此期间,他研究了光的折射,表明棱镜可以将白光发散为彩色光谱,而透镜和第二个棱镜可以将彩色光谱重组为白光。
他还通过分离出单色的光束,并将其照射到不同的物体上的实验,发现了色光不会改变自身的性质。牛顿还注意到,无论是反射、散射或发射,色光都会保持同样的颜色。因此,我们观察到的颜色是物体与特定有色光相合的结果,不是物体产生颜色的结果。(更多的细节,参看牛顿的色彩理论。)
从这项工作中,他得出了如下结论:任何折射式望远镜都会受到光散射成不同颜色的影响,并因此发明了反射式望远镜(现称作牛顿式反射望远镜)来回避这个问题。他自己打磨镜片,使用牛顿环来检验镜片的光学品质,制造出了优于折射式望远镜的仪器,而这都主要归功于其大直径的镜片。1671年,他在皇家学会上展示了自己的反射式望远镜。皇家学会的兴趣鼓励了牛顿发表他关于色彩的笔记,这在后来扩大为《光学》(Opticks)一书。但当罗伯特·胡克批评了牛顿的某些观点后,牛顿对其很不满并退出了辩论会。两人自此以后成为了敌人,这一直持续到胡克去世。
牛顿认为光是由粒子或微粒组成的,并会因加速通过光密介质而折射,但他也不得不将它们与波联系起来,以解释光的衍射现象。[8]而其后世的物理学家们则更加偏爱以纯粹的光波来解释衍射现象。现代的量子力学、光子以及波粒二象性的思想与牛顿对光的理解只有很小的相同点。
在1675年的著作《解释光属性的解说》(Hypothesis Explaining the Properties of Light)中,牛顿假定了以太的存在,认为粒子间力的传递是透过以太进行的。不过牛顿在与神智学家亨利·莫尔(Henry More)接触后重新燃起了对炼金术的兴趣,并改用源于赫密斯神智学(Hermeticism)中粒子相吸互斥思想的神秘力量来解释,替换了先前假设以太存在的看法。拥有许多牛顿炼金术著作的经济学大师约翰·梅纳德·凯恩斯曾说:“牛顿不是理性时代的第一人,他是最后的一位炼金术士。”[9]但牛顿对炼金术的兴趣却与他对科学的贡献息息相关[10],而且在那个时代炼金术与科学也还没有明确的区别。如果他没有依靠神秘学思想来解释穿过真空的超距作用,他可能也不会发展出他的重力理论。(参见艾萨克·牛顿的神秘学研究)
1704年,牛顿著成《光学》,其中他详述了光的粒子理论。他认为光是由非常微小的微粒组成的,而普通物质是由较粗微粒组成,并推测如果通过某种炼金术的转化“难道物质和光不能互相转变吗?物质不可能由进入其结构中的光粒子得到主要的动力(Activity)吗?[11]牛顿还使用玻璃球制造了原始形式的摩擦静电发电机[12]。
Ⅳ 牛顿对物理学的主要贡献
顿在科学上的主要贡献是:在力学上提出三大运动定律和万有引力定律;在光学上作出了白光是由七色光组成的判决实验,发现并解释“牛顿环”的干涉现象,创制了反射望远镜并提出光的微粒说;在数学上发现了微积分运算方法和无限级数理论,等等。他的最重要的科学著作是:1687年初版的《自然哲学的数学原理》(简称《原理》),1704年初版的《光学》。尤其是《原理》一书,几百年来颇受推崇。
在牛顿所处的时代,哥白尼提出了日心说,开普勒从第谷的观测资料中总结了经验的行星运动三定律,伽利略又给出了力、加速度等概念并发现了惯性定律和自由落体定律。但是,这些物理概念和物理规律还是孤立的、逻辑上各自独立的东西。正是在这个时候,牛顿对行星及地面上的物体运动作了整体的考察,他用数学方法,使物理学成为能够表述因果性的一个完整体系。这就是我们今天所说的经典力学体系。按照牛顿所说的这个体系的原理,人们利用描写物体运动的坐标及速度的初始值,就可以确定地知道该物体的未来和过去。牛顿建立了经典物理学的具有因果关系的完整体系并得到广泛的实际应用。他所建立的力学体系不仅能说明已有的理论已经说明的现象,如充分地解释伽利略发现的惯性定律和自由落体定律,而且能说明并解释已有的理论不能说明的现象,如完满地说明开普勒的行星运动三定律。更重要的是,牛顿的力学理论能预见到新的物理现象和物理事实,并能以天文观测或实验证实它们的正确性。在万有引力理论的基础上,人们后来发现并证实海王星和冥王星的存在,这是牛顿力学理论的有力佐证。牛顿力学既可以用予说明地面上的物质运动,又可以用予解释太阳系中的行星运动,充分证明了新理论具有的自然规律的普遍性法则。
正是在《原理》一书中,牛顿提出了力学的三大定律和万有引力定律,对宏观物体的运动给出了精确的描述,总结了他自己的物理学发现和哲学观点。《原理》是自然科学的奠基性巨著。该著作把地面上物体的运动和太阳系内行星的运动统一在相同的物理定律之中,从而完成了人类文明史上第一次自然科学的大综合。它不仅标志了十六、十七世纪科学革命的顶点,也是人类文明、进步的划时代标志。它不仅总结和发展了牛顿之前物理学的几乎全部重要成果,而且也是后来所有科学著作和科学方法的楷模。
Ⅵ 牛顿在物理领域有那些杰出的贡献300字
牛顿在科学上的主要贡献是:
在力学上提出三大运动定律和万有引力定律;在光学上作出了白光是由七色光组成的判决实验,发现并解释“牛顿环”的干涉现象,创制了反射望远镜并提出光的微粒说、
他的最重要的科学著作是:1687年初版的《自然哲学的数学原理》(简称《原理》),1704年初版的《光学》。
万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。
在牛顿所处的时代,哥白尼提出了日心说,开普勒从第谷的观测资料中总结了经验的行星运动三定律,伽利略又给出了力、加速度等概念并发现了惯性定律和自由落体定律。但是,这些物理概念和物理规律还是孤立的、逻辑上各自独立的东西。正是在这个时候,牛顿对行星及地面上的物体运动作了整体的考察,他用数学方法,使物理学成为能够表述因果性的一个完整体系。这就是我们今天所说的经典力学体系。按照牛顿所说的这个体系的原理,人们利用描写物体运动的坐标及速度的初始值,就可以确定地知道该物体的未来和过去。牛顿建立了经典物理学的具有因果关系的完整体系并得到广泛的实际应用。他所建立的力学体系不仅能说明已有的理论已经说明的现象,如充分地解释伽利略发现的惯性定律和自由落体定律,而且能说明并解释已有的理论不能说明的现象,如完满地说明开普勒的行星运动三定律。更重要的是,牛顿的力学理论能预见到新的物理现象和物理事实,并能以天文观测或实验证实它们的正确性。在万有引力理论的基础上,人们后来发现并证实海王星和冥王星的存在,这是牛顿力学理论的有力佐证。牛顿力学既可以用予说明地面上的物质运动,又可以用予解释太阳系中的行星运动,充分证明了新理论具有的自然规律的普遍性法则。
正是在《原理》一书中,牛顿提出了力学的三大定律和万有引力定律,对宏观物体的运动给出了精确的描述,总结了他自己的物理学发现和哲学观点。《原理》是自然科学的奠基性巨著。该著作把地面上物体的运动和太阳系内行星的运动统一在相同的物理定律之中,从而完成了人类文明史上第一次自然科学的大综合。它不仅标志了十六、十七世纪科学革命的顶点,也是人类文明、进步的划时代标志。它不仅总结和发展了牛顿之前物理学的几乎全部重要成果,而且也是后来所有科学著作和科学方法的楷模。
Ⅶ 牛顿在物理领域的哪些方面做出什么贡献
物体运动的三个基本定律(牛顿三定律):
第一定律(即惯性定律)
任何一个物体在不受任何外力或受到的力平衡时(Fnet=0),总保持匀速直线运动或静止状态,直到有作用在它上面的外力迫使它改变这种状态为止。
第二定律
①牛顿第二定律是力的瞬时作用规律。力和加速度同时产生、同时变化、同时消逝。
②F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。
③根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=may列方程。
第三定律
表达式F=-F'(F表示作用力,F'表示反作用力,负号表示反作用力F'与作用力F的方向相反)。
(7)牛顿在物理学方面的贡献扩展阅读
牛顿人物生平
1643年1月4日,艾萨克·牛顿出生于英格兰林肯郡乡下的一个小村落伍尔索普村的伍尔索普(Woolsthorpe)庄园。在牛顿出生之时,英格兰并没有采用教皇的最新历法,因此他的生日被记载为1642年的圣诞节。牛顿出生前三个月,他同样名为艾萨克的父亲才刚去世。由于早产的缘故,新生的牛顿十分瘦小;
据传闻,他的母亲汉娜·艾斯库(Hannah Ayscough)曾说过,牛顿刚出生时小得可以把他装进一夸脱的马克杯中。当牛顿3岁时,他的母亲改嫁并住进了新丈夫巴纳巴斯·史密斯(Barnabus Smith)牧师的家,而把牛顿托付给了他的外祖母玛杰里·艾斯库(Margery Ayscough)。
年幼的牛顿不喜欢他的继父,并因母亲改嫁的事而对母亲持有一些敌意,牛顿甚至曾经写下:“威胁我的继父与生母,要把他们连同房子一齐烧掉。
Ⅷ 牛顿对于物理学的所有贡献
牛顿在伽利略等人工作的基础上进行深入研究,总结出了物体运动的三个基本定律(牛顿三定律):
第一定律(惯性定律)
任何一个物体在不受任何外力或受到的力平衡时(Fnet=0),总保持匀速直线运动或静止状态,直到有作用在它上面的外力迫使它改变这种状态为止。
第二定律
1)牛顿第二定律是力的瞬时作用规律。力和加速度同时产生、同时变化、同时消逝。 (2)F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。 (3)根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=may列方程。牛顿第二定律的六个性质(1)因果性:力是产生加速度的原因。 (2)同体性:F合、m、a对应于同一物体。 (3)矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。牛顿第二定律数学表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。 (4)瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。 (5)相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立。 (6)独立性:作用在物体上的各个力,都能各自独立产生一个加速度,各个力产生的加速度的失量和等于合外力产生的加速度。适用范围(1)只适用于低速运动的物体(与光速比速度较低)。 (2)只适用于宏观物体,牛顿第二定律不适用于微观原子。 (3)参照系应为惯性系。两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。(详见牛顿第三运动定律)表达式F=-F'
第三定律
(F表示作用力,F'表示反作用力,负号表示反作用力F'与作用力F的方向相反)这三个非常简单的物体运动定律,为力学奠定了坚实的基础,并对其他学科的发展产生了巨大影响。第一定律的内容伽利略曾提出过,后来R.笛卡儿作过形式上的改进,伽利略也曾非正式地提到第二定律的内容。第三定律的内容则是牛顿在总结C·雷恩、J·沃利斯和C·惠更斯等人的结果之后得出的。 牛顿是万有引力定律的发现者。他在1665~1666年开始考虑这个问题。万有引力定律(Law of universal gravitation)是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。1679年,R·胡克在写给他的信中提出,引力应与距离平方成反比,地球高处抛体的轨道为椭圆,假设地球有缝,抛体将回到原处,而不是像牛顿所设想的轨道是趋向地心的螺旋线。牛顿没有回信,但采用了胡克的见解。在开普勒行星运动定律以及其他人的研究成果上,他用数学方法导出了万有引力定律。 牛顿把地球上物体的力学和天体力学统一到一个基本的力学体系中,创立了经典力学理论体系。正确地反映了宏观物体低速运动的宏观运动规律,实现了自然科学的第一次大统一。这是人类对自然界认识的一次飞跃。 牛顿指出流体粘性阻力与剪切率成正比。他说:流体部分之间由于缺乏润滑性而引起的阻力,如果其他都相同,与流体部分之间分离速度成比例。现在把符合这一规律的流体称为牛顿流体,其中包括最常见的水和空气,不符合这一规律的称为非牛顿流体。 在给出平板在气流中所受阻力时,牛顿对气体采用粒子模型,得到阻力与攻角正弦平方成正比的结论。这个结论一般地说并不正确,但由于牛顿的权威地位,后人曾长期奉为信条。20世纪,T·卡门在总结空气动力学的发展时曾风趣地说,牛顿使飞机晚一个世纪上天。 关于声的速度,牛顿正确地指出,声速与大气压力平方根成正比,与密度平方根成反比。但由于他把声传播当作等温过程,结果与实际不符,后来P.-S.拉普拉斯从绝热过程考虑,修正了牛顿的声速公式。
Ⅸ 你能说出牛顿在物理学中的贡献吗并谈谈对这句话的体会
牛顿对于物理学的贡献是巨大的,最有代表性的就是发现了三大运动定律和万有引力定律。牛顿的贡献还不仅限于大量的发现和分明,另外他还系统的整理了物理学的体系框架,写出了《自然哲学的数学原理》一书。
要说体会,苹果手机里的什么重力感应系统,加速感应系统等等,运用的原理就是牛顿第一运动定律。