当前位置:首页 » 范本前言 » 超临界二氧化碳循环引言
扩展阅读
中国网络原创新人乐团 2021-03-31 20:26:56
党政视频素材 2021-03-31 20:25:44
厦门大学统计学硕士 2021-03-31 20:25:36

超临界二氧化碳循环引言

发布时间: 2021-03-14 14:49:27

1. 什么叫超临界二氧化碳

超临界二氧化碳萃取技术是国际上先进的分离技术。具有低温、无毒、分离效率高等特点。在现代科学技术高度发展的今天,人们已愈来愈对食品、保健品的质量与安全性提出了更高的要求,“返朴归真,回归自然”已成为人们追求的时尚。利用超临界二氧化碳萃取技术从天然动植物及中药中分离生物活性成分,具有广阔的市场前景及强大的生命力。
任何一种气体均有一个“临界点”,气体在临界点时所对应的温度和压力称为临界温度和临界压力。当气体的温度和压力高于其临界温度和临界压力时,则称该气体为超临界流体。此时该流体的密度接近于液体的密度,而其粘度和扩散系数则与普通气体相近,这种特殊性质的超临界流体一般都具有极强的溶解能力。
利用这一原理,选用二氧化碳气体在超临界状态下与天然原料接触,有关天然成份就会溶解于超临界流体之中,达到了有效成份与原料的分离。然后通过减压或升温的方法,将超临界流体中萃取的有效成份在分离器中分离出来,即得到高品质的有效成份,这就是超临界二氧化碳的简单过程。
由于二氧化碳独特的安全性、无毒性,故而被称为绿色生物分离技术,风靡欧美等发达国家,非常适合当今社会“绿色环保”的要求,是一种极具发展前景的先进分离技术。

2. CO2的超临界和跨临界 是什么意思,有什么差别呢

超临界是指CO2的温度和压力都超过了临界值
跨临界还是头一回听说,是说CO2从非超临界状态进入到了超临界状态么?

3. 什么是超临界二氧化碳流体的作用

超临界是一种物理化学状态
处于超临界状态下的CO2的密度随温度压力的微小变化会有很大的改变
所以利用这个性能人们开发了超临界CO2萃取技术
超临界co2的作用不仅仅限于这个,还有很多其他用途,这些你可以到我刚刚开的超临界吧里面提问!
http://post..com/f?kw=%B3%AC%C1%D9%BD%E7

4. 关于超临界二氧化碳

二氧化碳为非极性分子,根据相似相溶原则,结合超临界CO2的溶解力强的特点,能溶解有机物,高级香料大多为有机物,因此超临界CO2可以作为高级香料的萃取剂。
CO2不能算是有机物,自然称不上有机溶剂。
题干是说二氧化碳流体和水相似,但相似之处只有在能阻燃、溶解能力强的溶剂方面。

5. 超临界CO2溶剂的发展历程

超临界流体具有溶解其他物质的特殊能力,1822年法国医生Cagniard首次发表物质的临界现象,并在1879即被Hannay和Hogarth二位学者研究发现无机盐类能迅速在超临界乙醇中溶解,减压后又能立刻结晶析出.但由于技术,装备等原因,时至
图1.物体之三相图以及临界点 图自工研院 环安中心
PDF created with pdfFactory Pro trial version 超临界二氧化碳
20世纪30年代,Pilat和Gadlewicz两位科学家才有了用液化气体提取「大分子化合物」的构想.1950年代,美,苏等国即进行以超临界丙烷去除重油中的柏油精及金属,如镍,钒等,降低后段炼解过程中触媒中毒的失活程度,但因涉及成本考量,并未全面实用化.1954年Zosol用实验的方法证实了二氧化碳超临界萃取可以萃取油料中的油脂.此后,利用超临界流体进行分离的方法沉寂了一段时间,70年代的后期,德国的Stahl等人首先在高压实验装置的研究取得了突破性进展之后,「超临界二氧化碳萃取」这一新的提取,分离技术的研究及应用,才有实质性进展;1973及1978年第一次和第二次能源危机后,超临界二氧化碳的特殊溶解能力,才又重新受到工业界的重视.1978年后,欧洲陆续建立以超临界二氧化碳作为萃取剂的萃取提纯技术,以处理食品工厂中数以千万吨计的产品,例如以超临界二氧化碳去除咖啡豆中的咖啡因,以及自苦味花中萃取出可放在啤酒内的啤酒香气成分.超临界流体萃取技术近30多年来引起人们的极大兴趣,这项化工新技术在化学反应和分离提纯领域开展了广泛深入的研究,取得了很大进展,在医药,化工,食品及环保领域成果累累.

6. 超临界二氧化碳是什么有什么作用

超临界流体具有类似气体的扩散性及液体的溶解能力,同时兼具低黏度,低表面张力的特性,如表1所示,使得超临界流体能够迅速渗透进入微孔隙的物质.因此用于萃取时萃取速率比液体快速而有效,尤其是溶解能力可随温度,压力和极性而变化.
超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的.当物质处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,黏度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来.
在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小,沸点高低和分子量大小的成分萃取出来.同时超临界流体的密度,极性和介电常数随着密闭体系压力的增加而增加,利用预定程序的升压可将不同极性的成分进行分步提取.当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压,升降温的方法使超临界流体变成普通气体或液体,被萃取物质则自动完全析出,从而达到分离提纯的目的,并将萃取与分离两过程合为一体,这就是超临界流体萃取分离的基本原理.
所谓的二氧化碳超临界萃取是将已经压温加压成超临界状态的二氧化碳作为溶剂,以其极高的溶解力萃取平时不易萃取的物质,以下有几项关于萃取的说明:
(1)溶解作用
在超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性,沸点和分子量密切相关,一般来说有以下规律:亲脂性,低沸点成分可在104KPa(约1大气压)以下萃取,如挥发油,烃,酯,醚,环氧化合物,以及天然植物和果实中的香气成分,如桉树脑,麝香草酚,酒花中的低沸点酯类等;化合物的极性基团( 如-OH,-COOH等)愈多,则愈难萃取.强极性物质如糖,氨基酸的萃取压力则要在4×104KPa以上.另外化合物的分子量愈大,愈难萃取;分子量在200~400范围内的成分容易萃取,有些低分子量,易挥发成分甚至可直接用CO2液体提取;高分子量物质(如蛋白质,树胶和蜡等)则很难以二氧化碳萃取.

7. 超临界CO2溶剂的未来展望

国际上超临界流体萃取与造粒技术的研究和应用正方兴未艾,技术发展应用范围包括了:萃取(extraction),分离(separation),清洗(cleaning),包覆(coating),浸透(impregnation),颗粒形成(particle formation)与反应(reaction).德国,日本和美国已处于领先地位,在医药,化工,食品,轻工,环保等方面研究成果不断问世,工业化的大型超临界流体设备有5000L~10000L的规模,日本已成功研制出超临界色谱分析仪,而台湾亦有五王粮食公司运用超临界二氧化碳萃取技术进行食米农药残留及重金属的萃取与去除.
最引人注意的研究领域,主要在机能性成分的萃取,纤维染色技术,半导体的清洗,特殊药用成分的颗粒生产等.流体的应用,则以二氧化碳,水与丙烷三种为主.由于二氧化碳在使用安全性上的考量,将在未来超临界流体应用上,持续占有重要的地位.超临界水的应用,预期将会是下一波的主流.而在某些食品的应用上,丙烷相较于二氧化碳在制造成本上的优点,也越来越受重视.
目前国际上超临界流体萃取究重点已有所转移,为得到纯度较高的高附加值产品,对超临界流体逆流萃取和分馏萃取的研究越来越多.超临界条件下的反应的研究成为重点, 特别是超临界水和超临界二氧化碳条件下的各类反应,更为人们所重视.超临界流体技术应用的领域更为广泛,除了天然产物的提取,有机合成外还有环境保护,材料加工,油漆印染,生物技术和医学等;有关超临界流体技术的基础理论研究得到加强,国际上的这些动向值得我们关注.
超临界流体技术对于中药现代化至关重要.要从单纯的中间原料提取转向兼顾复方中药新药的开发利用,或对现行生产的名优中成药工艺改进或二次开发上;加强分析型超临界流体萃取或超临界色谱在中药分析中的应用,不断改革传统的分析方法;超临界流体结晶技术及其超细颗粒的制备可用于中药新剂型的开发,应加强在中药制剂中的应用,以推动中药制剂的现代化.
整体而言,超临界流体技术,将持续的在不同的领域中,将可由食品到药品以至于化学品和工业化产品的生产应用.此技术虽然不是万能加工技术,却绝对是二十一世纪讲求环保生态化工制程中的另一种选择.

8. 超临界二氧化碳流体

研究超临界CO2流体的物理性质有助于对CO2地质储存机理、CO2地质储存量计算以及CO2地质储存工程注入安全性控制等一系列问题的深入研究。

任何一种物质都存在气、液、固三种相态。三相成平衡态共存的点叫三相点。气、液两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度(TC)和临界压力(PC),不同物质的临界点所要求的温度和压力各不相同。

所谓超临界状态是指物质的温度和压力高于临界点后,物质不再有液态和气态的区别,而呈现均匀流体的状态。超临界状态下的CO2具有类似液体的高溶解性和气体的高扩散性与穿透性。处于超临界状态时,气液两相性质非常相近,向该状态气体加压,气体不会液化,只是密度增大,具有类似液态的性质,同时还保留有气体性能,这种状态的流体称为超临界流体(师春元等,2006)。

有关CO2物理化学性质的介绍在诸多专著中均可见及,在此引用韩布兴(2005)、师春元等(2006)以及沈平平等(2009)等人的研究成果,重点介绍与超临界CO2流体有关的主要性质。

(一)超临界二氧化碳的主要特征

在室温(20~25℃)条件下,CO2是一种无色、无味的气体,呈弱酸性,不可燃烧。在一个标准大气压和温度为0℃的条件下,CO2的密度为1.9768g/cm3,相当于空气密度(1.2928g/cm3)的1.529倍。在天然气组成的众多组分中,CO2的密度(1.9768g/cm3)较大,明显大于甲烷、乙烷、氮气、硫化氢、氢气、氧气、水蒸气、氦和氩的密度(表1-2)。

表1-2二氧化碳的主要物理性质

图1-6CO2相态变化图(据Kross等,2002)

CO2以分子的形式存在。线性结构的CO2分子由一个碳原子和两个氧原子通过双化学键的形式结合。CO2分子直径为4.7×10-10m,大于CH4(甲烷)的分子直径(3.8×10-10m)。

尽管CO2主要以气态形式在大气中存在,它还有超临界、液态和固态几种形式。超临界CO2(Supercritical Carbon Dioxide,简称SC-CO2)是指温度和压力均在其临界点(31.1℃,7.38MPa)之上的CO2流体(图1-6)。

超临界CO2流体在物理性质上兼有气体和液体双重特性,即密度高于通常的气体,接近于液体,因而具有常规液态溶剂的强度;黏度与气体相似,比液体大为减小;扩散系数接近于气体,具有较好的流动性。而且,由于内在的可压缩性、流体的密度、溶剂强度和黏度等性能均可由压力和温度的变化来调节。同时,超临界CO2密度值较高且随压力增高而增高,具有类似液体的性质(沈平平等,2009)。此外,超临界CO2具有化学性质稳定、无毒性、不易燃和不爆炸、临界状态容易实现、其临界温度接近常温、过程能耗低等特点(师春元等,2006)。

图1-7超临界CO2密度与温度和压力关系(据韩布兴,2005)

超临界CO2与CO2液体有以下区别:①液态CO2具有表面张力,而超临界CO2气体无表面张力;②当温度低于临界温度时,液态CO2可以在设备上看到气液交界面,而超临界状态的CO2则无气液交界面;③液体和气体的折射率不同;④从CO2密度图(图1-7)可看出,气相等压线族松散,密度变化大,表明气相可以压缩,而液相情况则反之,即液相难以压缩,故压缩率不同。

超临界CO2在临界点附近的一个重要特征是,近临界区任何物理性质的微小变化都会造成其他物理性质的剧烈变化,主要是温度和压力对CO2流体的物理性质影响。以上性质将对CO2的地质储存起到关键性作用。

对于密闭容器中的CO2,液相密度(ρ)值将随温度升高而降低,变化于463.9~1177.9kg/m3之间;而气相CO2密度则随温度升高而增大,范围为13.8~463.9kg/m3。固态CO2(干冰)的密度值范围为1512.4~1595.2kg/m3,随着温度的增加,密度将稍有下降。

常温常压下饱和水溶液中所溶解的CO2气体体积与水的体积比近乎为1,CO2的浓度为0.4mol/L。大部分CO2是以结合较弱的水合物分子形式存在的,只有少部分形成碳酸,电离出的H+会降低水的pH值。CO2和H2O作用生成H2CO3,在标准状况下CO2溶于水后的pH值为3.7,所以认为CO2溶于水所形成的H2CO3是一种弱酸(张学元等,2000)。

超临界CO2流体被认为是一种环境友好的绿色溶剂,因此超临界流体应用技术被认为是一种绿色技术,故而受到高度重视,世界许多国家都投入了大量的人力和物力开展相关研究。现今,超临界流体在萃取分离、化学反应工程、环境保护与治理、材料科学、食品、医药、分析技术和微电子技术等方面均已有应用,而且随着超临界流体技术问题的不断研究以及新技术、新工艺的开发,超临界流体技术的应用将越来越广泛,并将解决一些现有其他技术难以或无法解决的难题,必将产生巨大的经济效益、社会效益和环境效益。

(二)超临界二氧化碳流体性质

超临界CO2流体的临界参数见表1-3。

表1-3超临界CO2流体的临界参数

1.二氧化碳的密度

超临界CO2的密度与温度和压力的关系为典型的非线性关系。由图1-8可以看出,密度随压力的升高而增大,随温度的升高而减小。当流体处于临界点附近时,密度随压力和温度的变化十分敏感,微小的压力或温度变化可导致密度的急剧变化。CO2流体密度可以在很宽的范围内变化,介于150~900g/L之间。因此,适当控制流体压力和温度可以使其密度变化达到3倍以上。

图1-8CO2密度随深度变化图

进行CO2地质储存时,当把CO2注入地下800m以下时,CO2即以超临界流体的状态存在,其体积也随之急剧变小(图1-8)(Angus et al.,1973)。这种相态目前被认为是CO2地质储存的理想状态。在该温度和压力条件下,超临界的CO2既可以像气体一样具有较好的可压缩性,有助于注入的CO2在储层中扩散;又可以像液体一样具有较大的密度(200~900kg/m3),有利于在相同的空间内储存更多的CO2(Bachu,2000)。这也是CO2地质储存的理论基础所在。

研究表明CO2的密度是温度和压力的函数,图1-9给出了CO2的密度随温度和压力的变化情况(Bachu,2003)。从图1-9可以看出,当CO2由气相变为液相或超临界状态时,密度急剧增加。

图图1-9CO2的密度是温度和压力的函数

在20℃时,垂直线代表了一个不连续的密度的改变,在相应的蒸气压力下,一个小的压力增加就会使CO2从气态变化到液态。由图1-9可以看出,随着压力的增加,密度相应增大,而随着温度的升高密度则减小。

2.二氧化碳的黏度

气体黏度表示气体流动的难易程度。黏度大,说明气体不易流动;反之,黏度小,气体容易流动(沈平平等,2009)。

动力黏度(μ)被定义为流体中任意点上单位面积的剪应力(τ)与速度梯度(vx/y)的比值,它是流体(气体或液体)内摩擦而引起的阻力。

在标准状态下,CO2气体的动力黏度为0.0138mPa·s;临界状态下的黏度则为0.0404mPa·s。通常情况下,流体的黏度会随着压力的增加而增加,随着温度的升高而降低。

长期以来,所见文献对于CO2黏度的测量结果的不一致性始终未能得以解决。一般采用液相的计算公式,在其后结合混合函数来计算气相的黏度。这些方程计算起来冗繁,而且与期望的结果相差很大。Fenghour等(1998)给出了基于实验数据的一个经验公式来计算CO2的黏度,其适用条件是温度范围为200~1500K,密度值可达到1400kg/m3。温度在1000K以下时,黏度公式的最大适用压力可达到300MPa。该方法已经被看做是一种标准。

图1-10是Bachu(2003)等得到的CO2黏度随温度和压力的变化曲线,显然CO2的黏度是温度和压力的一个重要函数。由图1-10可以看出CO2黏度会随着温度的降低而增加。

图图1-10CO2的黏度是温度和压力的函数

3.二氧化碳的溶解度

CO2在水和水溶液中的溶解度主要取决于温度和压力。此外,影响溶解度的因素在一定程度上还包括溶液的性质和矿物质的浓度、在胶体溶液中的分散度、溶液本身界面的大小与CO2接触时间的长短等(沈平平等,2009)。

表1-4列出了文献发表的CO2溶解度数据现状。

CO2在原油中的高溶解度,以及CO2的亲和力可导致原油膨胀和降低原油黏度而广泛用于非混相驱工艺。文献上对于CO2溶解度的研究主要来源于Welker(1963);Poettmann(1946,1951);Jacoby(1952)和Simon和Graue(1965)等人的研究。Welker的溶解度方法仅仅适合于温度为80℉。文献中给出了两种系统的溶解度数据:一种是包括CO2和轻质油的二元和三元混合系统;第二种是CO2和重质油系统,适用温度范围为40~90℉。Jacoby测量CO2的溶解度作为温度和压力的函数,主要针对含有天然气和吸收油混合液以及天然气和原油的混合液,其中CO2的含量仅有5%。Simon和Graue进一步研究了CO2在多种不同原油中的溶解度,温度范围在110~250℉,压力达到2300psi###①。Simon和Graue结合了40多种不同CO2与原油系统的实验数据推导出了一种溶解度公式,与实验数据比较平均误差在2.3%内,最大误差不超过7%。其曲线如图1-11所示。

表1-4CO2溶解度的测量

图1-12示出了原油溶解度的修正系数。该系数(乘以图1-11中的XCO2)的K特征因数与K=11.7不同。这些特征因数(Watsonetal.,1935),即原油轻馏组分的衡量标准,可用特征因数表、原油的黏度和API重度来确定。

图1-11根据压力和温度确定的原油中CO2的溶解度(据Simonetal.,1965)

图1-12原油中CO2溶解度的修正系数是特征因数(K)的函数(据Simonetal.,1965)

(三)超临界二氧化碳的传递属性

传递属性是指流体分子传递的三个性质(师春元等,2006),即:黏度系数(μ)、导热系数(k)和扩散系数(D)。超临界流体与通常的气体和液体的传递属性的比较见表1-5。

表1-5流体的传递性质数值比较

超临界流体的密度是气体的几百倍,与液体相当,但从表1-5中数据可知,其黏度比液体要小近百倍,流动性要比液体好得多;溶质在超临界流体中的扩散系数虽比在气体中的要小几百倍,但却比在液体中的大几百倍,表明在超临界流体中的传质比液相中的传质要好。

(1)扩散系数和黏度

扩散系数(D)和黏度(μ)是衡量超临界流体传质能力的重要物理参数。超临界CO2的扩散系数远高于液体的扩散系数(通常液体的自扩散系数小于10-5cm2/s)。

图1-13(a)是温度0℃和75℃时,CO2的自扩散系数随压力的变化规律。由该图可以看出,当压力低于临界压力时,CO2的自扩散系数随压力的升高而很快降低。但当压力较高时,压力对CO2自扩散系数的影响较小。并且,温度越高,CO2的自扩散系数越大。

图1-13CO2的自扩散系数(a)和黏度(b)与压力的关系(据韩布兴,2005)

图1-14CO2表面张力随温度变化曲线(据韩布兴,2005)

图1-13(b)为几种温度下CO2的黏度与压力的关系。由该图可以看出,当压力较低时,黏度基本保持恒定;而当压力升高时,黏度随之增大。值得注意的是,在临界点附近,黏度随压力的升高而急剧增大;然后,变化速率随压力的升高又相对平缓。在相同温度下,在一定压力范围内(1.00<pr<2.00),超临界流体的黏度比常压气体的黏度仅高1个数量级左右。由扩散系数和黏度变化规律可以看出,超临界二氧化碳具有良好的传质能力(韩布兴,2005)。

(2)表面张力

CO2流体在不同温度下的表面张力(σm)见图1-14。由图1-14可以看出,随着温度的升高,表面张力逐渐下降,当温度接近临界温度时,表面张力降至零(韩布兴,2005)。

(四)比热容、密度、导热系数和黏度随温度的变化趋势

在每个给定超临界压力下,CO2的比热容随温度的变化规律是先升高而后又下降,在某个温度下存在最大值(图1-15,沈平平等,2009)。通常称在给定压力下,比热容达到最大值时所对应的温度为准临界温度。显然每一个超临界压力所对应的准临界温度是不同的。CO2在临界点处的比热容为无穷大。当处于超临界压力时,比热容的峰值降低,而且压力越高,峰值越小。通常当超临界流体温度低于准临界温度时,具有“类液体”性质,当流体温度高于准临界温度时,具有“类气体”性质,所以此点也被称为准临界点(沈平平等,2009)。

同样,当温度给定时,比热容随压力的变化与随温度的变化趋势相同。在某个压力下,比热容出现最大值。不同的温度,比热容出现最大值时所对应的压力值是不同的。而且温度越高,比热容峰值越小。

图1-16至图1-18(沈平平等,2009)显示出,CO2的密度、导热系数和黏度的变化趋势很相似。在给定超临界压力下,它们都随温度的增加而下降;而在给定温度下,它们都随超临界压力的增加而增加。当超临界压力一定时,CO2的密度随温度的增加而降低,但是密度降低的速度在不同温度范围内是不同的;当温度一定时,CO2的密度随压力的增加而增大,但是在不同的压力范围内增大的速度也不同。

图1-15比热容随温度的变化

图1-16密度随温度的变化

图1-17导热系数随温度的变化

图1-18黏度随温度的变化

9. 什么是超临界二氧化碳布雷顿循环系统

布雷顿循环 Brayton Cycle 亦称焦耳循环或气体制冷机循环。是以气体为工质的制冷循环,其工作过程包括等熵压缩、等压冷却、等熵膨胀及等压吸热四个过程,这与蒸汽压缩式制冷机的四个工作过程相近,两者的区别在于工质在布雷顿循环中不发生集态

10. 谁有超临界二氧化碳的物性参数啊或者告诉我在哪儿可以查到啊

超临界CO_2的热物理性质是超临界CO_2萃取工业装置设计和模拟必需的基础数据。由立方型状态方程及其导出模型计算超临界CO_2热物性的误差偏大,因此建立新的模型是很有必要的。 一个超临界CO_2压缩因子实验数据的新的双自变量拟合方程,该方程是一个无待定系数的双自变量方程,模型参数用遗传算法优化确定,在T=310~1800K,P=7.5~60MPa的范围内,由该方程计算的超临界CO_2压缩因子Z值的平均偏差(AAD)为1.23%。 以新拟合方程为基础,导出超临界CO_2的焓,热容,Joule-Thomson系数等热力学性质的计算模型。新拟合方程与Dean-Stiel粘度模型相结合,构建了超临界CO_2粘度的计算模型,并运用遗传算法优化确定了模型参数:新拟合方程与对比密度法相结合,构建了超临界CO_2导热系数的计算模型,并运用遗传算法优化来确定了参数