當前位置:首頁 » 論文設計 » 奧迪a4點火系統維修畢業論文
擴展閱讀
中國網路原創新人樂團 2021-03-31 20:26:56
黨政視頻素材 2021-03-31 20:25:44
廈門大學統計學碩士 2021-03-31 20:25:36

奧迪a4點火系統維修畢業論文

發布時間: 2021-03-25 18:46:38

㈠ 奧迪a4點火閂故障怎麼解決

奧迪a4點火閂故障需要進行鑰匙匹配來實現故障的解除,具體操作步驟如下:

1、把奧迪a4的車鑰匙插入到點火開關轉至儀表燈亮。

㈡ 奧迪A4 1.8T不供油不點火,曲軸位置感測器也更換了,報219繼電器故障,但經過檢查繼電器正常

不噴油不點火順說明發動機電腦沒有工作,打開鑰匙門,看儀表上的發動機故障燈是不是亮,如果亮,說明發動機電腦工作了沒亮說明發動機電腦沒有工作,發動機電腦沒工作找電腦工作電源,發動機電腦工作了還要找曲位

㈢ 奧迪A4啟動不了打火沒反應,儀表提示的故障很多,除了發動機沒有提示故障,其他的都提示故障

沒壞之前如果能正常行駛 那就去附近有干擾 多開車鎖車幾次試試可以啟動了 把車開到服務站清下故障碼就行

㈣ 04年奧迪A4發動機不點火什麼原因呢

1、奧迪A6L提供了專門為中國市場開發的2.5升V型6缸 FSI燃油直噴發動機,該款發動機與2.8FSI和3.0TFSI同屬於一系列,是奧迪最新的發動機產品,搭載了奧迪可變氣門升程系統(AVS)、FSI燃油直噴系統等高效技術,全面替代上一代奧迪A6L中的2.4升發動機。
2、奧迪A6L 2.5 FSI發動機2.5 FSI發動機在平順性和運轉噪音方面有著傳統直列四缸發動機無法比擬的優勢,同時兼顧強勁動力與高效表現於一身,帶來140千瓦的最大功率和250牛·米的峰值扭矩,配合8速multitronic無級/手動一體式變速器,綜合油耗僅為7.5升/100公里。
3、奧迪A6L搭載的孿生動力2.8 FSI和3.0 TFSI發動機也經過了全面的改進,配合使用8速multitronic無級/手動一體式變速器以及7速S tronic雙離合變速器。峰值功率達162千瓦的2.8 FSI發動機可在3,000至5,000轉/分的區間內輸出最大扭矩280牛·米,同時,二氧化碳排放較上一代減少35克/公里。
4、以強勁的動力表現和出色的燃油經濟性先後兩次榮膺全球十佳發動機殊榮的3.0 TFSI發動機的表現堪稱同級別最佳。在機械增壓器的輔助下,動力提升至220千瓦並產生高達440牛·米的強勁扭矩,僅需5.9秒便能使全新奧迪A6L 3.0 TFSI quattro從靜止加速到百公里時速,比上一代車型快了0.7秒並且二氧化碳排放減少43克/公里。

㈤ 奧迪A4檢測到 1 2 3 缸都檢測失火,還有氣缸壓縮比故障,室外溫度感測器故障怎麼處理啊

要檢測的東西比較多,最起碼得要先看正時是否對准,還有VVT是否有故障。室外溫度這個可以暫時不用管,最多就換個感測器。望採納

㈥ 奧迪a4p006800故障P010600故障P115800故障,故障燈點亮,起停有時不能正常起動

你這個故障代碼的話建議你最好還是去當地專業修理廠讓師傅用電腦檢測一下再處理

㈦ 奧迪a4點火不啟動原因

排氣管結凍
外觀特徵為霧缸壓,供油供電正常,不著車。此種情況容易發生於使用頻率特別低的車輛,如家距單位特別近,發動機燃燒後的水汽在排氣管的消音器處結凍,短途行駛昨天的冰沒化完,又結了今天的冰,時間長了,影響到排氣,嚴重則無法起動。解決方法非常簡單,將車置於暖環境中,冰化了自然可起動。徹底的解決則可及時去跑一下高速,車多跑一下,排氣的熱量會將冰徹底化掉而排出。

氣門結膠
冬季用車,特別是用了不清潔的汽油後,汽油中的膠質不可燃燒將積累在進、排氣門及燃燒室附近,在寒冷的早晨會造成起動費勁,甚至不著火。應急方法:可向燃燒室內滴一些機油,一般可起動。起動後到服務站進行免拆清洗,嚴重的要汽車維修解體清洗缸蓋。
點火系統工作狀態不好
特別冷天由於進氣溫度低,燃油在汽缸內霧化不好,若加之點火能量不足,其結果就會發生淹缸現象,即過多的燃油積累在汽缸內,超過著火極限濃度而無法著車。應急方法:可擰出火花塞擦掉電極間油污,裝復後即可著車。徹底的辦法是檢查點火系統,排除點火能量低的原因,常見如火花塞電極間隙、點火線圈能量、高壓線狀態等。
汽油流動受阻
表現特點為發動機供油管內無油壓。此種情況多發生於溫度特別低的早晨,是燃油管路長期臟污造成。溫度特別低時水與雜物相混使燃油管路不通,結果無法起動。應急方法:將車置於溫暖的環境,一會兒車即可起動;或者採用清洗油路的辦法加以徹底解決。
電瓶虧電
其表現特點是起動機開始轉但轉速不夠即無力,後來起動機只咔咔響不轉。冬季低溫及個別用電設備忘關後會造成車輛無法起動,特別是冬季長期短途低速使用,電瓶電壓會低於額定值,起動及無法正常運轉。若有發生請打服務站救援電話,或找車對一下,或暫時對著火,之後必須到服務站對電瓶補充充電。

㈧ 誰有 論述電子點火系統的診斷方法的 畢業論文 給發一個 謝謝

利用尾氣分析發動機的故障

有一輛1995年生產的尼桑藍鳥轎車,故障現象是冷車時掛擋後踩油門有輕微的沖擊,怠速不良,做過許多檢查和修理,始終不能解決問題。

該車最初進廠修理是因為沖洗發動機後不能著車,拖進廠後檢查發現點火系統進水,進行請潔乾燥之後重新裝復,車雖然著了,但是怠速有些不穩。經過檢查發現高壓線有漏電現象,分火頭和分電器蓋也有些燒蝕。徵得用戶同意後對上述部件進行了更換,發動機故障基本排除,但用戶反映車不好用,冷車掛檔後踩油門有輕微的沖擊。雖然故障現象非常不明顯,但用戶執意要求檢修,並聲稱如果問題不能解決,就要把前面的修理費用免掉。

我接到這輛車時正是熱車,由於一時不能驗證故障現象,便先根據用戶描述的情況進行分析,認為故障可能出在油路上。隨後在熱車狀態下進行無負荷測試尾氣,測試結果如下:怠速時HC為275ppm(標准值為220ppm),CO為0.3%(標准值為1.2%);高怠速時HC為120—150ppm,CO為0.3%一0.5%(該廠僅有一台兩氣廢氣分析儀)。測量氣缸壓力,各缸壓力正常。進行氣缸功率平衡測試,各缸工作都正常。進行斷缸測試,各缸HC和CO值變化都一樣。

從上面的數據當中是否可以發現問題呢7當然可以。盡管兩氣尾氣分析儀本身沒有數據分析和混合比濃度測試的功能(一般四氣尾氣分析儀可以通過CO,、O2以及過量空氣系數入直接看出混合比濃度),但通過數據可以看出,這輛車的尾氣排放偏低,對於沒有安裝氧感測器和三元催化器的車輛來說是太低了。CO含量高一般是因為混合比偏濃,而CO含量太低的一個主要原因是混合比偏稀。

根據這個思路,我將該車的尾氣調高,將CO調到1.0,HC調到200ppm。當車完全冷卻後再次進行檢測,尾氣排放沒有超標,原來的故障現象也徹底消失了。

各系統故障的方法,其目的是對發動機的燃燒狀況進行綜合評價。尾氣分析的主要內容有混合氣空燃比、點火正時及催化轉化器轉化效率等,主要的分析參數有CO、HC、CO2,和O2等的含量,還有空燃比(A/F)或過量空氣系數入。尾氣分析的項目如表1所示。

二、尾氣分析的基本規則

HC和O2的讀數高,是由點火系統不良或混合氣過稀失火引起的。當測試的CO、HC值高,而C02、02值低時,表明發動機工作混合氣很濃。如果燃燒室中沒有足夠的氧氣保證正常燃燒,通常情況下,CO2的讀數和CO的讀數相反。燃燒越完全,CO2的讀數就越高,其最大值在13.5%—14.8%之間,此時CO的讀數應該等於或接近於0.O2的讀數是最有用的診斷數據之—,02的讀數和其它3個讀數一起,能幫助找出故障診斷的難點。

通常,裝有催化轉化器的汽車,O2的讀數應該是1.0%—2.0%,說明發動機燃燒很好,只有少量未燃燒的02通過氣缸排出。如果02的讀數小於1.0%,則說明混合氣太濃,不利於燃燒。如果02的讀數超過2%,則說明混合氣太稀。

利用功率平衡試驗(根據製造廠的使用說明)和四氣尾氣分析儀的讀數,可以看出每個缸的工作狀況。如果每個缸C0和C02的讀數都下降,HC和C02的讀數都上升,且上升和下降的量都一樣,則證明每個缸都工作正常。如果只有一個缸的變化很小,其它缸都一樣,則表明這個缸點火或燃燒不正常。

一個調整好的閉環控制電控汽車的尾氣排放中,HC的含量大約為55~100ppm,CO應低於0.5%,O2為1.0%~2.0%,C02為13.8%~15.0%。

汽車尾氣測試值與系統故障的判斷分析如表2所示。

三、幾種常見的氣分析儀

汽車尾氣分析儀有兩氣、四氣和五氣等多種類型,下面分別進行介紹。

兩氣尾氣分析儀
兩氣尾氣分析儀是用來測量汽車尾氣排放中C0和HC的體積分數的。但是,如果一輛車的排氣管或尾氣分析儀的測量管路有泄漏,那麼所檢測到的就是被外部空氣稀釋了的尾氣,C0和HC的測量值將降低,自然就不能反映尾氣的真實含量。目前國內所用的兩氣尾氣分析儀大多都不具有檢查自身泄漏的功能,因此即使用兩氣尾氣分析儀測量車輛尾氣,也不能真實地反映出發動機的故障來。

2.四氣尾氣分析儀

隨著裝有三元催化轉化器和電子控制系統汽車的增多,汽車的排放標准也更加嚴格,因此需要更精確地測量尾氣並診斷車輛排放超標的原因。四氣尾氣分析儀不僅具備兩氣尾氣分析儀的所有功能,而且還能進行故障診斷和分析,它除了能測量C0和HC外,還能測量C02和02、發動機油溫、轉速等,以及計算過量空氣系數入和空燃比A/F等。所以四氣尾氣分析儀不僅可作為環保檢測儀器使用,作為發動機故障檢測分析的診斷工具也非常有用。

對於幾種尾氣的分析,前面我們已經做過闡述,在這里只對過星空氣系數入進行簡要的說明。過星空氣系數入可以直觀地告訴我們空燃比的情況,從理論上講,混合氣的過星空氣系數入=1最為標准,但實際上不可能沒有變化,所以一般情況下入被設計為0.97—1.04(有些車有具體說明),可以看成是理想的匹配。若入大於該值,說明空燃比過大,混合氣過稀;若入小於該值,則為空燃比過小,混合氣過濃。

四氣尾氣分析儀還可提供發動機轉速(RPM)和發動機溫度(TEMP)參數,作為故障診斷時的參考數據o

五氣尾氣分析儀
當C0和HC降低時,可能會引起尾氣中的N0x濃度升高,若要監測N0x的濃度,就得使用五氣尾氣分析儀。而且,N0x常常是在高溫大負荷的情況下產生的,若沒有底盤測功機,就只能靠路試去測量。

四、幾個應用實例

一輛捷達轎車,裝備ATK新2氣門發動機,配有三元催化轉換器。用戶反映該車發動機工作不穩,測量尾氣排放嚴重超標。
捷達新2氣門ATK發動機採用電子控制多點順序燃油噴射管理系統,該系統是一個集噴油、點火、怠速、爆震、空調、自我診斷及陂行回家等功能於一體的閉環集中控制系統。

根據該車故障現象,首先檢查火花塞,發現火花塞間隙偏大,更換新件後,尾氣排放情況略有好轉,但未得到明顯改善。連接故障診斷儀V.A.G1552對發動機電控系統進行檢測,調出1個故障碼(氧感測器)。按故障碼的提示,檢查氧感測器至發動機電腦的連接線束,未發現短路、斷路情況,於是將氧感測器更換。隨後試車,繼續測量尾氣,尾氣排放指標依然偏高,但發動機電控系統已無故障顯示。

用燃油壓力表測量噴射系統壓力,發動機怠速時油壓為250kPa,急加速時為300kPa;關閉點火開關10min後,系統保持壓力為200kPa,以上各項數據均正常。接下來拆下噴油嘴進行超聲波清洗,測量其電阻值為15Ω,也符合標准。連接壓力機,觀察噴油嘴霧化狀態良好,檢查噴油嘴連接線束,也無短路、斷路情況。

繼續檢查點火系統,用萬用表測量點火線圈、高壓線電阻均正常。將發動機恢復後試車,故障依舊。用V.A.G1552查尋故障存儲,仍沒有故障碼出現。在讀取測量數據時,觀察到氧感測器信號電壓在0.2—0.8V之間變動,屬正常;進氣壓力感測器的數據也符合標准。於是懷疑三元催化轉換器有問題,將其更換後試車,尾氣排放依然超標。檢查配氣相位,正時標記正確;懷疑汽油質量有問題,清洗油箱及管路並更換優質汽油後,情況絲毫不見好轉。

經仔細觀察發現:如果起動發動機後怠速運轉而不進行路試,尾氣排放基本合格;路試約2km後尾氣排放指標升高;若每次起動間隔時間超過30min,怠速測量基本合格。根據上述情況,決定更換發動機電腦,但將電腦更換了也無濟於事。

其它部分是否存在問題呢?於是抱著試試看的想法,拆下排氣歧管進行檢查,並與新的排氣歧管進行比較,發現該車氧感測器的排氣取樣孔偏小。換上新的排氣歧管進行尾氣檢測,各項指標顯著降低。對該車進行路試,尾氣排放依然合格。恢復該車所換的其它配件,繼續試車,尾氣排放始終未超標。

由此可以斷定,故障部位就在氧感測器排氣取樣孔。由於從氣缸內排出的廢氣處於高速流動狀態,行至氧感測器取樣孔處時形成渦流,導致排出的廢氣不能及時在此處更新,使氧感測器不能准確地向發動機電腦反饋同步信號,造成發動機電腦不能根據實際工況對噴油脈寬進行正確修正,最終出現發動機工作異常,尾氣排放嚴重超標的故障。

有一個時期,曾有一批車出現過此類故障,都是由於進行尾氣改造後,氧感測器取樣孔打得不合適,導致氧感測器不能有效採集尾氣,造成信號失准。

一輛裝備5S—FE發動機的豐田佳美轎車,發動機怠速不穩,經常熄火。
該車採用TCCS發動機電子控制系統。首先調取故障代碼,儀錶板上的發動機故障指示燈顯示為正常代碼。用四氣尾氣分析儀進行檢測,儀器顯示的檢測結果如表3所示。由檢測結果可以看出:HC和02都較高,這是空燃比失衡的一個重要特徵;C0值較低,而C02在峰值,這說明可燃混合氣已充分燃燒,點火系統應該不會有什麼問題;入值較高。綜合分析表明,該發動機工作時的混合氣偏稀,因此應從進氣系統和供油系統著手進行故障檢查。

對車輛進行檢測:真空管無漏氣、錯插現象;PCV閥密封良好,機油尺插口良好。起動發動機,將化油器清洗劑噴在進氣管墊和EGR閥周圍,發現隨著轉速上升,怠速逐漸穩定。取下EGR閥,發現針閥周圍有少量積碳,EGR閥通道上有很多積碳,針閥不能落入閥座,致使進氣歧管的混合氣被廢氣稀釋,從而怠速不穩,發動機容易熄火。

對EGR閥進行徹底清洗,並換上新墊,起動發動機,一切恢復正常。再次用尾氣分析儀進行檢測,結果如表4所示,所有數據都在標准范圍之內,故障排除。

從這個故障診斷實例可以看出,在對有故障的車輛做完必要的常規檢查之後,使用尾氣分析儀可以很快發現故障的本質原因,縮小檢修范圍。

一輛廣東三星6510汽車,套裝97款克菜斯勒道奇3.3L發動機,行駛里程為140000km。
故障現象:掛檔輕加油門至1200r/min時有時熄火,不熄火時怠速降至400—500r/min甚至更低;急加油門沒有任何故障,熄火後起動容易。

故障分析:試車過程中,沒有明顯的斷油或斷火的感覺,但總感覺進入的空氣量不夠用。經檢查,怠速系統沒有任何故障,怠速馬達在其它修理廠進行過替換試驗,沒有問題;節氣門體也進行過更換試驗,沒有問題;用額外補充進氣量的辦法(斷開一個節氣門體後面的真空管),同樣沒有解決任何問題。原地不掛檔加油門試驗,無論怎樣試驗均沒有任何故障徵兆,發動機轉速從1200r/min到800r/min下降非常平穩。懷疑是進氣壓力感測器有故障,有可能緩加油門時不能很好地感知進氣量,所以使用檢測儀的數據流功能,對各個數據進行實時觀察,沒發現有錯誤的數據流,MAP數值正常。對供油系統和點火系統進行仔細檢查和測量,均沒有發現任何故障。

到現在為止應該說僅是憑經驗感覺一點故障線索,那就是感覺好像進氣量太少。既然懷疑是因為進氣量太少造成的故障,那麼通過尾氣檢測一定可以發現一些線索,所以對尾氣進行了測量,怠速時的檢測結果如表5所示。

通過測量結果我們可以發現,混合氣偏稀(入大於1.03),燃燒比較好 (CO2較高,接近於15%)。通過上面的分析,可以間接證明該車進氣或者供油系統有故障。為了檢驗這一分析,將所有影響進氣量或感知進氣量的元件一一列出,採取逐步分析排除的辦法確定故障元件。這些元件有:怠速馬達、節氣門體及其感測器、MAP感測器、EGR閥。前幾種元件已經檢驗和試驗過, 目前只剩下EGR閥沒進行過檢驗。

EGR排氣再循環閥的功用是在發動機工作過程中,將一部分廢氣引到吸入的新鮮空氣(或混合氣)中返回氣缸進行再循環,以減少N0x的排放量。因為N0x主要是在高溫富氧條件下生成的,廢氣為惰性氣體,在燃燒過程中吸收熱量,這樣將降低最高燃燒溫度,也減少了N0x的生成量。但是過度的排氣再循環會影響發動機的正常運行,特別是在怠速、低速小負荷及發動機冷態運行時,參與再循環的廢氣會明顯降低發動機的性能。因此應根據工況及工作條件的變化,自動調整參與再循環的廢氣量。根據發動機結構不同,進入進氣歧管的廢氣量一般控制在6%—13%之間。

在EGR系統中,通過一個特殊的通道將排氣歧管與進氣歧管連通,在該通道上裝有EGR閥,通過控制EGR閥的開度來控制參與再循環的廢氣量(如圖1所示)。EGR閥開啟或關閉是由閥上方真空氣室的真空度來控制的,而真空度則由受ECU控制的EGR真空電磁閥控制。

EGR電磁閥受ECU控制,ECU根據發動機轉速、空氣流量、進氣管壓力、溫度等信號控制EGR電磁線圈通電時間的長短,以此來控制進入EGR閥真空氣室上方的真空度,從而控制EGR閥的開度,改變參與再循環的廢氣量。

裝有背壓修正閥的EGR排氣再循環系統,在EGR(真空)電磁閥與EGR閥間的真空管路中裝有一個背壓修正閥,其功用是根據排氣歧管中的背壓附加控制月F氣再循環。即當發動機在小負荷工況,排氣背壓低時,背壓修正閥保持EGR閥處於關閉狀態,不進行排氣再循環;只有在發動機負荷增大,排氣歧管背壓增大時,背壓修正閥才允許EGR閥打開,進行排氣再循環。

排氣歧管的背壓通過管路作用在背壓修正閥的背壓氣室下方,當發動機處於小負荷工況,排氣背壓低時,在閥門彈簧的作用下氣室膜片向下移動,使修正閥門關閉真空通道,此時EGR閥在其閥門彈簧作用下保持關閉,因而不進行排氣再循環;當發動機負荷增大,排氣歧管背壓升高時,修正閥背壓氣室下方的背壓升高,使膜片克服閥門彈簧彈力向上運動,將修正閥門打開,由EGR電磁閥控制的真空通過背壓修正閥進入EGR閥上方真空氣室,將EGR閥吸開,月F氣再循環通道打開,廢氣進行再循環。

EGR電磁閥受ECU控市IJ,ECU根據轉速信號、進氣壓力信號、水溫信號、空氣流量信號等,通過控制EGR電磁閥的開度來控制進入EGR閥的真空度,從而控制EGR閥的開度,改變參與再循環的廢氣量。

通過上面的EGR閥工作原理分析可知,EGR在怠速工況和小負荷情況下是不參與工作的,否則會有一部分尾氣進入燃燒室,不但會降低燃燒室的溫度,還會惡化燃燒環境,阻礙新鮮空氣的進入。

故障排除:更換EGR閥,故障徹底消失。

一輛奧迪A6轎車,裝備2.8LJV6電控發動機,怠速時有輕微抖動,並且加速遲緩。
故障檢查:檢測點火波形基本正常,但稍有不穩。測量尾氣,C0為0.3%一0.5%,HC為200一500ppm,且在此范圍內波動。用V.A.G1552檢測儀檢查,無故障代碼輸出。用V人.G1552故障檢測儀進行數據流檢測,發動機電控系統運行參數正常。

檢測結果分析:根據對客戶的詢問和加速遲緩的症狀,應考慮對噴油器進行清洗;C0值正常,HC值雖然符合排放污染物的限制標准,但該車裝有氧感測器和催化轉化器,其C0值應低於0.5%,HC應低於100 ppm,而檢測結果表明該車HC值高於此,標准且有波動,從出廠標准考慮為不正常,因此考慮發動機可能有失火現象,應進一步檢查點火系統是否有輕微斷路或短路,特別是短路故障。

故障檢修:清洗噴油器,觀察各缸噴油器的霧化狀況和流星的均勻性,均良好。檢查點火系統,發現有一個缸的高壓線有輕微短路(漏電)現象,為此更換了高壓線。因火花塞間隙偏大,也同時更換了。復檢發動機抖動稍有改善,但未徹底消除;尾氣檢查HC值下降不大,並仍有波動,分析認為故障仍可能是失火所致。

為了進一步診斷故障,分別在左、右兩側月F氣歧管氧感測器旁邊的尾氣檢測口(該口通常用一個螺栓密封)進行檢測,結果發現:左側氣缸排出的尾氣C0值在0.5%左右,HC值在125ppm左右(因在催化轉化器前測量,其值會比在月F氣民管測量值稍高),且波動極小;右側氣缸排出的尾氣中C0值也在0.5%左右,但HC值卻在125—250ppm之間,且時有波動。因此間題應在右側氣缸中。為此檢查右側氣缸的高壓線和火花塞,發現第2缸火花塞的3個電極中有一個間隙過小,調整後重新安裝,故障完全消除,尾氣檢測值也符合出廠標准。

目前,安裝催化轉化器的車型越來越多,測量尾氣有時比較困難,在不能很好分析故障的時候,可以盡量在催化轉化器前方測量,這樣可能更真實地反映發動機的排放情況。同時,還應將催化轉化器前、後的測量結果加以比較,以便判斷催化轉化器的轉化效率是否正常。

一輛賓士S320轎車,發動機怠速不穩,抖動嚴重,但加速正常。
故障檢測:調取該車故障代碼,顯示為正常代碼;用示波器測試點火二次波形,結果正常;對各缸氣缸壓力進行測試,均在標准范圍之內;進氣及真空系統不漏氣;用四氣尾氣分析儀檢測尾氣,發現怠速時數據很不穩定,第1組數據如表6所示,4種氣體的檢測數值全都較高。再次測試,其數據如表7所示。

檢測結果分析:將上述檢測結果進行對比分析發現,HC和Co總是同時升高或降低,C02時高時低,燃燒效率很不穩定,02不能充分參與反應,數值一直較高。從而可以判定為混合氣的形成與燃燒環境十分惡劣。推測是噴油器堵塞,導致噴油器針閥與閥座配合不密封,各缸噴油器在應該噴油時不噴油或少噴油,而在不需噴油時卻持續噴油,因而造成供油不正常,致使4種氣體的檢測數據極不穩定。

故障檢修:做噴油脈沖寬度試驗,怠速時為3.5ms,在正常范圍內。拆下各缸噴油器檢查,果然每個噴油器都有不同程度的堵塞。經過徹底清洗,裝復試車,一切恢復正常。

從該故障的檢修過程可以看出,在燃油系統的檢查中,利用尾氣分析儀可以省去一些檢修環節,如油壓的測試,燃油泵、油壓調節器和燃油濾請裝置的檢測。換個角度來考慮,假如在應急修理中,在未做相關檢查之前,就用尾氣分析儀進行檢測,也許在診斷一開始就能找到故障點。

一輛奧迪100型轎車,裝備2.6LV6電控發動機,運轉時嚴重抖動,加速無力,排氣管排出的氣體氣味嗆人。
故障檢測:用V.A.G1552微機故障檢測儀對發動機電控系統進行檢測,存在故障代碼,故障代碼的含義是「右側燃油自適應修正已達極限」。用V.A.G1552微機故障診斷儀對發動機電控系統進行數據流檢測,發現左、右兩側的燃油修正因數相差過大,左側為—3.8%—0%,而右側為10%—12.9%。用發動機綜合分析儀檢查點火系統並進行氣缸壓力分析,發現第3缸點火波形的擊穿電壓較低,且該缸氣缸壓力偏低(氣缸壓力相差過大也會導致發動機抖動)。用尾氣分析儀檢測尾氣,Co為0.9%—1.3%, 而HC高達2800—2900 PPmo

檢測結果分析:根據檢測結果可認為右側混合氣過稀,控制電腦對右側燃油系統進行連續加濃且已達到修正極限。為判斷是否是由於右側氧感測器的信號導致這種結果,先對左、右兩側的氧感測器信號及其對空燃比變化的反應、電控單元對氧感測器信號變化的響應能力進行測試。為此,人為地製造混合氣過濃和過稀的狀態,發現氧感測器和電控單元的功能均正常,因此可以認為故障是控制系統以外的原因導致的。

根據上述檢測結果,點火波形基本正常,可以認為點火系統正常,但HC過高表示失火,因此可以認為這種失火很可能是由於混合氣過稀,超出著火界限所致。但從尾氣中的Co值看,實際混合氣並不過稀,因此判斷故障很可能是進氣系統漏氣所致。測量氣缸壓力,發現第3缸壓力比其它缸低約100kPao

故障檢修:在拆解進氣歧管時,發現進氣歧管墊的實際壓合面寬度只有1mm左右(至少應有4—5mm),其原因是進氣歧管的安裝面為v形,在安裝密封墊後,再安裝進氣歧管時,由於不小心使該墊下滑,從而減小了密封帶,導致嚴重漏氣,即使燃油修正已達到極限,但仍無法完全補償,這是機械原因導致的故障。將上述故障點徹底排除後試車,故障排除。

一輛上海別克G轎車,故障症狀是發動機排氣冒黑煙。
診斷與排除:大修發動機後試車,開始時一切正常,只是排氣管介面墊有些輕微漏氣。繼續試車發現,發動機熱車後出現怠速不穩、加速不暢現象,同時故障燈點亮報警。經檢查,顯示故障碼為四131,即氧感測器故障。發動機熱車運轉時就車測量(不拔下括頭),氧感測器電壓為0.28V且不變化,更換一個氧感測器後,發動機剛著車時還好,但運轉一會兒後故障重現,怠速不穩,排氣管冒黑煙。拆下火花塞檢查,發現已有積碳,更換一組新火花塞後,運轉約半小時,怠速又不穩,檢查火花塞又被積碳糊死。此時故障燈再次點亮,經檢查顯示故障碼P0171,即混合氣太稀。

因更換氧感測器後故障不但沒有好轉反而加重,所以修理工認為故障不在氧感測器。經測量,油壓正常,又檢查、試換7空氣流星、水溫、節氣門位置等感測器,故障始終未能排除,於是回過頭來再檢查新換的氧感測器。經就車測量,氧感測器電壓為0.18V左右,與用檢測儀查到的數據相同,證明檢測儀可以完全接收到氧感測器電壓。斷開氧感測器括頭,測量PCM端接線,電壓只有0.32V(理論值為0.45V),於是懷疑電路有故障或PCM損壞。

用尾氣分析儀檢查尾氣,發現在怠速時C0含量接近4%,HC達到300ppm左右。通過尾氣分析可以認為此時的混合氣不是太濃。就車測量氧感測器,電壓仍舊很低(這種現象又可以解釋為混合氣過稀)。斷開氧感測器括頭,用數字萬用表測量PCM端電壓為0.44V,說明線路及PCM基本情況正常。為什麼會出現濃、稀兩種截然不同的解釋呢7難道是新換的氧感測器有故障7於是,使用模擬器模擬氧感測器數值的功能。

將模擬器的綠色氧感測器專用線和黑色連線連接在車上氧感測器的輸出迴路上;
將中間功能選擇開關置於Knock/0xy位置;
將右側功能選擇開關置於VoHs/0xy位置;
使發動機起動運轉,然後打開SST皿,此時SST皿4寄產生一個0.15V的恆定的連續信號來模擬稀混合氣狀態下的氧感測器發出的信號;
按下模擬器上方的「0(y」鍵,模擬器將產生一個0.85V的恆定的連續信號來模擬濃混合氣狀態下的氧感測器發出的信號;
在使用模擬器模擬7氧感測器後,再用檢測儀讀取數據流,發現氧感測器的輸入信號也一同變化;
當模擬器的電壓較長時間為0.85V時,觀察尾氣的C0值降為0.65%,說明PCM對系統的控制完好,故障原因還是在氧感測器。將氧感測器安裝到其它車輛上進行試驗,沒有發現任何故障,數據流、燃燒、尾氣、行駛都很正常。
通過上面的試驗可以證明:系統幾乎沒有故障,問題的原因在於氧感測器信號。因為此車有漏氣現象,會不會是因為排氣包漏氣,導致排氣包中形成負壓,將外界的真空引進排氣系統當中了呢7經檢查ldF氣系統確有漏氣之處,將排氣管修好之後試車,故障排除。
另外,團IDC網上有許多產品團購,便宜有口碑