當前位置:首頁 » 論文設計 » 土木工程道路方向畢業設計摘要
擴展閱讀
中國網路原創新人樂團 2021-03-31 20:26:56
黨政視頻素材 2021-03-31 20:25:44
廈門大學統計學碩士 2021-03-31 20:25:36

土木工程道路方向畢業設計摘要

發布時間: 2021-03-23 06:08:45

① 土木工程道橋方向畢業設計

土木工程道橋方向
這個您到底幾號 要上交的呢 ?
上交後可以的

② 求個土木工程路橋方向畢設論文3000字左右中英互譯

城市路橋工程項目後評價指標體系研究
【摘要】隨著我國城市化進程的加快,城市路橋工程項目取得了長足發展。而在路橋工程項目建設發揮信息反饋功能的城市路橋工程項目後評價,它已經成為提高投資效益和管理決策水平的重要手段,並日益受到重視。我國20世紀80年代開始工程項目後評價研究,已經取得了一定研究成果,但是工程項目後評價理論的研究主要側重於路橋工程的過程和財務效益方面,而忽視項目的社會經濟和環境影響方面的研究,致使後評價的內容及指標體系不完整。其主要原因有兩點:一、國內相關的管理部門過於重視可行性研究報告的工程項目前評價,沒有意識到路橋工程項目後評價的重要性和意義;二、路橋工程項目是一項復雜的系統工程,具有公益性、共享性的公共物品特點,後評價需要大量的數據和資料,並且效益很難量化,造成評價內容單一、很多指標操作性不強等問題。文章在總結前人研究基礎上,針對城市路橋工程項目後評價指標研究的不足,構建一套科學完整的城市路橋工程項目後評價指標體系。首先,文章對國內外路橋工程項目後評價研究現狀進行了總結,並進行相應的綜述評論;其次,對城市路橋工程項目後評價的基本理論進行闡述,為之後的研究做了理論鋪墊;然後,總結了國內外工程項目後評價內容及指標的發展演變,並分析了現行的城市路橋工程項目後評價內容及指標的不足,為構建科學的城市路橋工程項目後評價指標體系奠定基礎;接著,遵循一定的指標設置原則的前提,選擇一些具有代表性、科學性、可操作性的指標,從項目的目標、過程、運行效益、社會影響、經濟影響、環境影響、目標持續性七個方面,構建一套科學完整的城市路橋工程項目後評價指標體系;最後,總結了城市路橋工程項目後評價指標體系研究成果,同時指出在研究中的一些不足,並對未來尚待進一步研究的問題進行展望。
【關鍵詞】城市路橋工程項目; 後評價指標體系; 後評價

③ 求一篇土木工程畢業設計摘要(框架結構),要類似這樣的 字數不用很多 300字以內

其實摘要還是蠻容易寫的吧,我建議你將摘要放到最後才寫,只要你寫完了整個論文,就很容易些摘要了,摘要一般就400字左右,很容易籌字數的

④ 土木工程畢業設計摘要翻譯

得一會啊,我給你翻譯

⑤ 急求土木工程道路方向的畢業設計外文翻譯,最好有中文譯文。

這是當年畢業時我的翻譯,因為原文有圖表等原文也超過10000字,沒法在這里發,如需要原文(pdf版及word版)及全部翻譯(5000字,中文),請留下郵箱。

摘要部分的翻譯:

各種斷面形狀鋼管混凝土的單軸應力應變關系
K.A.S. Susantha , Hanbin Ge, Tsutomu Usami*

土木工程學院,名古屋大學, Chikusa-ku ,名古屋 464-8603, 日本
收訖於2000年5月31日 ; 正式校定於2000年12月19日; 被認可於2001年2月14日
¬¬
摘要
一種預測受三軸壓應力混凝土的完全應力-應變曲線的方法被提出,這種三軸壓應力是由環形、箱形和八角形的鋼管混凝土中的限製作用導致的軸向荷載加測向壓力所產生的。有效的經驗公式被用來確定施加於環形鋼管混凝土柱內混凝土的側向壓力。FEM(有限元)分析法和混凝土-鋼箍交互作用模型已被用來估計施加於箱形和八角形柱的混凝土側向壓力。接著,進行了廣泛的參數研究,旨在提出一個經驗公式,確定不同的筒材料和結構特性下的最大平均側向壓力。如此計算出的側向壓力通過一個著名經驗公式確定出側向受限混凝土強度。對於高峰之後的應力-應變關系的確定,使用了有效的試驗結果。基於這些測試結果,和近似表達式來推算下降段的斜度和各種斷面形狀的筒內側向受限混凝土在確認的混凝土強度下的應變。推算出的混凝土強度和後峰值性能在允許的界限內與測試結果吻合得非常好。所提出的模型可用於包括樑柱構件在內的纖維分析,以確定抗震結構設計中混凝土填充鋼柱筒的極限狀態的推算標准。 •版權所有2001 Elsevier科學技術有限公司。
關鍵詞: 鋼管混凝土;限制;混凝土強度;延性;應力應變關系;纖維分析

Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes

K.A.S. Susantha, Hanbin Ge, Tsutomu Usami *

Department of Civil Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
Received 31 May 2000; received in revised form 19 December 2000; accepted 14 February 2001

Abstract
A method is presented to predict the complete stress–strain curve of concrete subjected to triaxial compressive stresses caused by axial load plus lateral pressure e to the confinement action in circular, box and octagonal shaped concrete-filled steel tubes. Available empirical formulas are adopted to determine the lateral pressure exerted on concrete in circular concrete-filled steel columns. To evaluate the lateral pressure exerted on the concrete in box and octagonal shaped columns, FEM analysis is adopted with the help of a concrete–steel interaction model. Subsequently, an extensive parametric study is concted to propose an empirical
equation for the maximum average lateral pressure, which depends on the material and geometric properties of the columns. Lateral pressure so calculated is correlated to confined concrete strength through a well known empirical formula. For determination of the post-peak stress–strain relation, available experimental results are used. Based on the test results, approximated expressions to predict the slope of the descending branch and the strain at sustained concrete strength are derived for the confined concrete in columns having each type of sectional shapes. The predicted concrete strength and post-peak behavior are found to exhibit good
agreement with the test results within the accepted limits. The proposed model is intended to be used in fiber analysis involving beam–column elements in order to establish an ultimate state prediction criterion for concrete-filled steel columns designed as earthquake resisting structures. •2001 Elsevier Science Ltd. All rights reserved.

Keywords: Concrete-filled tubes; Confinement; Concrete strength; Ductility; Stress–strain relation; Fiber analysis

1. Introction

Concrete-filled steel tubes (CFT) are becoming increasingly popular in recent decades e to their excellent earthquake resisting characteristics such as high ctility and improved strength. As a result, numerous experimental investigations have been carried out in recent years to examine the overall performance of CFT columns [1–11]. Although the behavior of CFT columns has been extensively examined, the concrete core confinement is not yet well understood. Many of the previous research works have been mainly focused on investigating the performance of CFT columns with various limitations. The main variables subjected to such limitations were the concrete strength, plate width-to- thickness (or radius-to-thickness) ratios and shapes of the sections. Steel strength, column slenderness ratio and rate of loading were also additionally considered. It is understandable that examination of the effects of all the above factors on performances of CFTs in a wider range, exclusively on experimental manner, is difficult and costly. This can be overcome by following a suitable numerical theoretical approach which is capable of handling many experimentally unmanageable situations. At present, finite element analysis (FEM) is considered as the most powerful and accurate tool to simulate the actual behavior of structures. The accurate constitutive relationships for materials are essential for reliable results when such analysis proceres are involved. For example, CFT behavior may well be investigated through a suitable FEM analysis procere, provided that appropriate steel and concrete material models are available. One of the simplest yet powerful techniques for the examination of CFTs is fiber analysis. In this procere the cross section is discretized into many small regions where a uniaxial constitutive relationship of either concrete or steel is assigned. This type of analysis can be employed to predict the load–displacement relationships of CFT columns designed as earthquake resisting structures. The accuracy involved with the fiber analysis is found to be quite satisfactory with respect to the practical design purposes.

At present, an accurate stress–strain relationship for steel, which is readily applicable in the fiber analysis, is currently available [12]. However, in the case of concrete, only a few models that are suited for such analysis can be found [3,8,9]. Among them, in Tomii and Sakino』s model [3], which is applicable to square shaped columns, the strength improvement e to confinement has been neglected. Tang et al. [8] developed a model for circular tubes by taking into account the effect of geometry and material properties on strength enhancement as well as the post-peak behavior. Watanabe et al. [9] concted model tests to determine a stress–strain relationship for confined concrete and subsequently proposed a method to analyze the ultimate behavior of concrete-filled box columns considering local buckling of component plates and initial imperfections. Among the other recent investigations, the work done by Schneider [10] investigated the effect of steel tube shape and wall thickness on the ultimate strength of the composite columns. El-Tawil and Deierlein [11] reviewed and evaluated the concrete encased composite design provisions of the American Concrete Institute Code (ACI 318) [13], the AISC-LRFD Specifications [14] and the AISC Seismic Provisions [15], based on fiber section analyses considering the inelastic behavior of steel and concrete.

In this study, an analytical approach based on the existing experimental results is attempted to determine a complete uniaxial stress–strain law for confined concrete in relatively thick-walled CFT columns. The primary objective of the proposed stress–strain model is its application in fiber analysis to investigate the inelastic behavior of CFT columns in compression or combined compression and bending. Such analyses are useful in establishing rational strength and ctility prediction proceres of seismic resisting structures. Three types of sectional shapes such as circular, box and octagonal are considered. A concrete–steel interaction model is employed to estimate the lateral pressure on concrete. Then, the maximum lateral pressure is correlated to the strength of confined concrete through an empirical formula. A method based on the results of fiber analysis using assumed concrete models is adopted to calibrate the post-peak behavior of the proposed model. Finally, the complete axial load–average axial strain curves obtained through the fiber analysis using the newly proposed material model are compared with the test results. It should be noted that a similar type of interaction model as used in this study has been adopted by Nishiyama et al. [16], which has been combined with a so called peak load condition line in order to determine the maximum lateral pressure on reinforced concrete columns.

Meanwhile, previous researches [17,18] indicate that the stress–strain relationship of concrete under compressive load histories proces an envelope curve identical to the stress–strain curve obtained under monotonic loading. Therefore, in further studies, the proposed confined uniaxial stress–strain law can be extended to a cyclic stress–strain relationship of confined concrete by including a suitable unloading/reloading stress–strain rule.

⑥ 小弟跪求一份土木工程道路方向本科畢業設計全過程資料

實踐考核本科與普通本科相比較的優勢:普通本科學生必須按部就班的讀完回四年的課程才可以考答研,而實踐考核本科的學生就不同了,可以將本科課程提前考完就可以繼續考研,這樣實踐考核本科類學生即節省了時間,又減輕了家裡的負擔,靈活性較大

⑦ 土木工程畢業設計目錄及摘要

摘要:

本次畢業設計是一幢行政辦公樓,主要進行的是結構設計部分。結構設計簡而言之就是用結構語言來表達工程師所要表達的東西。

結構語言就是結構師從建築及其它專業圖紙中所提煉簡化出來的結構元素,包括基礎、牆、柱、梁、板、樓梯、大樣細部圖等等。然後用這些結構元素來構成建築物或構築物的結構體系,包括豎向和水平的承重及抗力體系,再把各種情況產生的荷載以最簡潔的方式傳遞至基礎。

結構設計的階段大體可以分為三個階段:

一、結構方案階段:根據建築的重要性,建築所在地的抗震設防烈度,工程地質勘查報告,建築場地的類別及建築的高度和層數來確定建築的結構形式,本工程採用的是框架結構。

二、結構計算階段:包括荷載計算、內力計算和構件計算。

三、施工圖設計階段:根據上述計算結果,來最終確定構件布置和構件配筋以及根據規范的要求來確定結構構件的構造措施。

(7)土木工程道路方向畢業設計摘要擴展閱讀:

大學生在老師指導下,就選定的課題進行設計和研究,在經過計算、繪圖、建模等環節後,通過答辯才能畢業。如今,不少畢業生將畢設外包,並非一句簡單的誠信缺失就能解釋。

據媒體調查,與文科本科畢業生論文抄襲、偷工減料相比,理工科學生的網購畢業設計,「不會做」是最主要的原因。因其有較強的技術屬性,絕非短期突擊就可完成,要求的是平日里的積累和實操,不懂、不會就真的做不出來。平時不努力用功,畢業答辯迫在眉睫時,在網路上找人代做就成了「不得已」的選擇。

究其原因,學生懶惰、不誠信是一方面,高校「嚴進寬出」也讓大學生的專業學習缺乏緊迫感和危機感。一些學生在大學里過著「及格萬歲」的日子,而不少大學老師又天然地認為「大學需要學生自主學習,學不學跟老師沒關系」,進而教完課就走人,將工作重點放在科研上。教學關系很鬆弛,學習效果也在一定程度上打了折扣。

⑧ 可以翻譯一下土木工程方向畢業設計的中英文摘要嗎 ​

In yichang of hubei, this route is a main road, route design specifications for: roadbed width of 50 meters, of which the lanes 22 meters, 6 meters, the median is set 3 meters on both sides of the separation zone, non-motor vehicle driveways 5 meters, sidewalk 3 meters. Design speed of 50 km/h, route length 2000 meters, the starting point of the pile number K0 + 000.00, the finish pile number for K2 + 000.
This design mainly has carried on the roads of flat, vertical and horizontal combination and design; Vertical and channelized intersection design; Roadbed design; Pavement structure design; The road of rainwater drainage design. In the design to the design of the intersection, pavement structure design and road rainwater drainage design as the key point. Throughout the design process, the municipal road design software, using the hongye hongye municipal pipeline design software and Auto CAD auxiliary design.