『壹』 有關蜜蜂的論文題目
[1]. 徐衛濱, 無選擇策略的改進蜜蜂群演算法. 太原科技大學學報, 2011(05): 第343-347頁.
[2]. 陳璇與胡福良, 調控蜜蜂采粉行為的遺傳因素. 中國蜂業, 2010(11): 第13-15頁.
[3]. 汪明明等, 蜜蜂工蜂卵巢發育的影響因素. 中國蜂業, 2010(10): 第5-7頁.
[4]. 曾鳴等, 基於混沌量子蜜蜂演算法的機會約束輸電規劃. 電力系統保護與控制, 2010(22): 第1-7+14頁.
[5]. 安建東與陳文鋒, 全球農作物蜜蜂授粉概況. 中國農學通報, 2011(01): 第374-382頁.
[6]. 陳璇與胡福良, 雌性蜜蜂級型決定的分子機制. 蜜蜂雜志, 2011(04): 第1-7頁.
[7]. 侯春生與張學鋒, 生態條件的多樣性變化對蜜蜂生存的影響. 生態學報, 2011(17): 第5061-5070頁.
[8]. 陶德雙等, 中華蜜蜂為石榴授粉效果研究. 蜜蜂雜志, 2010(03): 第10-11頁.
[9]. 李兆英與奚耕思, 中華蜜蜂工蜂復眼的胚後發育研究. 陝西師范大學學報(自然科學版), 2010(03): 第60-64頁.
[10]. 嚴盈, 彭露與萬方浩, 昆蟲卵黃原蛋白功能多效性:以蜜蜂為例. 昆蟲學報, 2010(03): 第335-348頁.
[11]. 周亮等, 蜜蜂囊狀幼蟲病RT-PCR快速檢測方法的初步應用. 蜜蜂雜志, 2010(06): 第9-10頁.
[12]. 李兆英, 中華蜜蜂工蜂視葉胚後發育過程中的細胞凋亡. 昆蟲知識, 2010(04): 第680-684頁.
[13]. 沈登榮等, 蜜蜂作為病原物載體的研究進展. 中國生物防治, 2010(S1): 第118-122頁.
[14]. 周亮等, 蜜蜂囊狀幼蟲病RNA依賴的RNA聚合酶部分基因的克隆和序列分析. 中國畜牧獸醫, 2010(11): 第50-52頁.
[15]. 鄭肇葆, 產生最佳Tuned模板的蜜蜂交配演算法. 武漢大學學報(信息科學版), 2009(04): 第387-390+435頁.
[16]. 李偉強, 徐建城與殷劍鋒, 蜜蜂群優化演算法用於訓練前饋神經網路. 計算機工程與應用, 2009(24): 第43-45+49頁.
[17]. 周丹銀等, 蜜蜂為油菜授粉效果初步研究. 蜜蜂雜志, 2010(01): 第3-5頁.
[18]. 薛晗等, 空間機器人隨機故障容錯規劃的蜜蜂演算法. 信息與控制, 2009(06): 第724-734頁.
[19]. 張成翠與曾建潮, 蜜蜂群組決策方法的建模與模擬. 太原科技大學學報, 2009(06): 第452-455頁.
[20]. 周婷等, 蜜蜂巢房大小影響狄斯瓦蟎的繁殖行為. 昆蟲知識, 2006(01): 第89-93頁.
[21]. 歷延芳, 閆德斌與葛鳳晨, 蜜蜂為塑料大棚西瓜和田間西瓜授粉試驗報告. 蜜蜂雜志, 2006(01): 第6-7頁.
[22]. 王成菊等, 阿維菌素及其混配製劑對蜜蜂的安全性評價. 農業環境科學學報, 2006(01): 第229-231頁.
[23]. 黃智勇, 蜜蜂全基因組出籠前後. 昆蟲知識, 2007(01): 第5-9頁.
[24]. 姜雙林與李博平, 隴東地區不同生境下蜜蜂的種類及其生態分布. 草業科學, 2007(05): 第89-91頁.
[25]. 王志江與魏紅福, 蜜蜂α-葡萄糖苷酶的分離純化及其酶學性質研究. 食品科學, 2007(07): 第304-308頁.
[26]. 羅阿蓉等, 後基因組時代的蜜蜂QTL研究. 昆蟲學報, 2007(09): 第950-956頁.
[27]. 何鎧光, 劉佩珊與蘇鴻基, 台灣蜜蜂的螺旋菌質病研究. 蜜蜂雜志, 2007(S1): 第3-7頁.
[28]. 許益鵬等, 蜜蜂囊狀幼蟲病毒病的Nest-PCR檢測. 科技通報, 2007(06): 第824-827頁.
[29]. 林小麗等, 農葯對蜜蜂的風險評價技術進展. 農葯學學報, 2008(04): 第404-409頁.
[30]. 劉之光與石巍, 中國甘肅東北部地區東方蜜蜂(Apis cerana)形態學研究. 環境昆蟲學報, 2008(02): 第97-102頁.
昆蟲是如何發聲的 昆蟲的聲音是由特殊的發音器官產生的。下面簡單介紹幾種昆蟲的發聲原理—— 在各種鳴蟲中,蟋蟀的鳴聲清脆好聽。這個方面的我可以寫的
『叄』 法國法布爾他對昆蟲進行了長達幾年的研究
法布爾成年累月地觀察昆蟲,研究昆蟲。他在昆蟲學研究土蜂,用了兩年;研究一種藍黑色的甲蟲——地膽,花了25年;研究遂蜂,前後經過30年;研究蜣螂,用了40年!
『肆』 畢業論文求助
首先聽聽老師的指導意見.
其次多掌握資料,去圖書館資料庫下載,還有網上搜索一下目前有關這方面的研究熱點和動態,
閱讀資料後,你自然就知道要寫什麼了.
『伍』 《昆蟲記 》昆蟲的資料
世界上最長的昆蟲—— 新加坡竹節蟲是世界上最長的昆蟲,其細長的身體長達27厘米,倘若在安靜的狀態下充分舒展身體的話,身長可超過40厘米。竹節蟲所具有的保護形和保護色,使它在灌林叢中棲息時以假亂真。
世界上最長的甲蟲—— 亞馬遜巨天牛和大牙天牛是世界上最長的甲蟲。它們身長18厘米。大牙天牛的角(長顎)是專為切割樹枝所設計的,當它用銳利的角鉤住枝條後就繞著樹枝作360°的旋轉,直至把樹枝鋸斷為止。
世界上最大的蝶蛾——生長在南美洲的大灰夜蛾身長9厘米,展開雙翼有27厘米寬,體色為灰色帶有深色斑點,它們都是世界上蝶蛾類中最大的昆蟲。
最小的蝴蝶—一在已知的14萬多種鱗翅目昆蟲中,最小的蝴蝶是發現於南非的一種微型小蝶,兩個翅尖之間的長度僅有1.4厘米。
最兇猛的昆蟲——螳螂。
對人類健康危害最大的昆蟲—一蚊子。
對建築物危害最大的昆蟲—一白蟻。
對農業危害最大的昆蟲—一蝗蟲。
最重的昆蟲—一非洲赤道地區金龜子科的一種甲蟲,成年雄性個體的重量可達99.33克。
最小的昆蟲—一並列冠軍的是膜翅目的一種寄生蜂和纓甲科的一種甲蟲,體長都僅有0.02厘米,而該寄生蜂的翅展只有0.1厘米,比某些單細胞原生動物還要小。
最輕的昆蟲—一並列第一的是一種雄性的吸血虱和一種寄生蜂,個體都只有0.005毫克重,每盎司(約合28.35克)中大約有570萬頭蟲體之多。該寄生蜂的卵每個重量僅有0.0002毫克,每盎司大約含1億5千萬個卵。
分布最廣的昆蟲—一彈尾目的彈尾蟲,據計算每23厘米深的土壤中有這種跳蟲2億3千萬個,合每929平方厘米中至少有5千個。
飛得最快的昆蟲—一有一種蒼蠅的最高飛行速度可達每小時38.6公里,其瞬間速度竟高達每小時41.8公里。
壽命最長的昆蟲—一幾丁蟲,它的某些種類僅幼蟲期就長達30年以上。
鳴聲最大的昆蟲—一雄性的蟬(知了),它的發生器每分鍾可震動 7千4百次,遠在400米之外都能聽見。
最大的蝗蟲群—一1989年觀察到的一個最大蝗蟲群竟覆蓋了810公頃地面,據估算至少包含著大約2500億個個體,重量高達約55萬噸。
翅膀扇動最快的昆蟲—一一種搖蚊,每分鍾翅膀扇動次數高達近6萬2千8百次,肌肉收縮周期可快到1/2218秒。
翅膀扇動最慢的昆蟲—一黃鳳蝶,每分鍾翅膀扇動僅有300次,而大多數蝴蝶的翅膀扇動可達到每分鍾460次—636次。
產蜜最多的蜂房—一由一個澳大利亞人1938年創造,一個蜂房中產出蜂蜜的最高記錄為249.25公斤。
最大的蜻蜓—一南美洲中部的一種蜻蜓,體長達12厘米,翅展達到19厘米之多。
最大的跳蚤—一1913年從一個海狸頸部採集到的跳蚤標本,長達0.79厘米,相當於一般鉛筆的直徑尺寸。
跳得最高的跳蚤—一現在已知的跳蚤種類約為1830種,其中的跳高冠軍是人蚤,它在1910年創造的記錄是:跳遠33厘米,跳高19.7厘米。
『陸』 急求畢業論文《多樣的昆蟲》主題活動方案 裡面要有主題由來 主題目標 以及五大領域的
三級提綱擬好發送過去
『柒』 昆蟲記裡面有哪些昆蟲及它們的特點
1、干泥蜂
他們喜歡在潮濕溫暖的地方築巢。他們經常在煙囪里築巢,那裡的溫度適合干泥蜂生存,但是干泥蜂的幼崽經常窒息,所以干泥蜂會在寬闊的煙囪里築巢。
2、螢火蟲
只要螺旋的防護牆有一點空隙,就足夠它鑽空子了。螢火蟲那纖細靈巧的工具輕輕一咬,蝸牛當即陷人麻木僵滯狀態,接下來便是食蝸牛者不聲不響地悄悄下手。但螢火蟲操作總是極其謹慎。
它以輕柔的動作處理自己得到的犧牲品,不能使對方有絲毫攣縮反應。因為蝸牛隻要作出收縮動作,就會與粘附的物體脫膠,螢火蟲可沒興致去搜尋得而復失的獵物。
3、蟋蟀
當選擇住的地方時,他們不會選擇自然形成的隱藏的地方,因為這些洞不適合。它們都是倉促建造的,沒有安全保障。他們通常選擇排水條件好、陽光充足的地方,在選擇這些地方時,他們必須自己建造。
4、蟈蟈
強壯的腳,大肚子和良好的跳躍。生於原野草叢、矮林和灌木,通常藏在草叢中,或者在植物莖上爬行、棲息和覓食。它主要吃植物的莖、葉、瓜和果實。
5、毛蟲
每年三月份的時候,松毛蟲會排著整齊的隊伍,浩浩盪盪地離家出走了,最前面那隻不停地 探頭探腦地尋找路徑。終於,它們選好了一個風水寶地,開始挖洞了。
毛蟲其實是在自掘墳墓——它們把自己埋進土裡。松毛蟲也是列隊蟲,它們很笨,做事不動腦子,如果領頭的那一隻無論 怎麼打轉和歪歪斜斜的走,後面的也會照它的樣子去做。
6、聖甲蟲
食糞蟲中最大最負盛名的一種。月牙兒狀頂殼前沿排著六個細尖的齒,既是挖掘工具,切割工具,也是插舉,拋甩糞料中無養分植物纖維的叉子。
而巴還可以當耬耙,把好吃的東西統統摟過來。為後代或自己儲備食物的第一步是選料,剔除雜質,收攏成堆,之後清理出一塊場地。
7. 蟬
能夠很容易的在穴道內爬上爬下,對於它是很重要的,因為當它爬出去到日光下的時候,它必須知道外面的氣候如何。所以它要工作好幾個星期,甚至一個月,才做成一道堅固的牆壁,適宜於它上下爬行。在隧道的頂端,它留著手指厚的一層土,用以保護並抵禦外面空氣的變化,直到最後的一霎那。
8. 舍腰蜂
我記得有一次去一家絲廠,在那裡我見到過一個舍腰蜂的巢。它把自己的巢建在機房裡,並且為自己選擇了剛好是在大鍋爐的上面的天花板上的一個地方。看來,它真是慧眼獨具啊!它為自己選擇的這個地點,整個一年,無論寒暑,也無論春夏秋冬的變遷,
很顯然,在這些日子裡,鍋爐里並沒有加熱,所以,溫度當然會隨之有所變化的。這個事實很明顯地告訴我們,這個小小的動物對溫度真是要求很高啊!而且,地點的家和他也是個非常會為自己挑選地點的傢伙。
9. 螳螂
但那個可憐的蝗蟲移動到螳螂剛好可以碰到它的時候,螳螂就毫不客氣,一點兒也不留情地立刻動用它的武器,用它那有力的「掌」重重地擊打那個可憐蟲,再用那兩條鋸子用力的把它壓緊。於是,那個小俘虜無論怎樣頑強抵抗,也無濟於事了。像秋風掃落葉一樣地對待敵人,是螳螂永不改變的信條。
10、 螢
螢常常要利用一種爬行器——為了彌補它自己腿部,以及足部力量的不足——爬到瓶子的頂部去,先仔細的觀察一下蝸牛的動靜,然後,做一下判斷和選擇,尋找可以下鉤的地方。然後,就這么迅速地輕輕一咬,就足以使對手失去知覺了。這一切就發生在一瞬間。於是,一點兒也不拖延,螢開始抓緊時間來製造它的美味佳餚——肉粥,以准備作為數日內的食品。
11、 蜘蛛
在六種園蛛中,通常歇在網中央的只有兩種,那就是條紋蜘蛛和絲光蜘蛛。它們即使受到烈日的焦灼,也絕不會輕易離開網去陰涼處歇一會兒。至於其他蜘蛛,它們一律不在白天出現。它們自有辦法是工作和休息兩個互不相誤,在離開它們的網不遠的地方,有一個隱蔽的場所,是用葉片和線捲成的。白天它們就躲在這裡面,靜靜地,讓自己深深地陷入沉思中。
(7)昆蟲畢業論文擴展閱讀
作者簡介
法布爾,全名讓·亨利·卡西米爾·法布爾(Jean-Henri CasimirFabre),1823年出生於法國南部普羅旺斯的聖萊昂的一戶貧困農民家中,從童年時起,他就表現出對於自然和昆蟲的喜愛。長大後曾就讀於公立師范院校,畢業後擔任中學教師一職。
在任中學教師期間,他一面工作一面勤學苦讀,先後取得了數學學士學位、自然科學學士學位和自然科學博士學位。同時,他還利用業余時間觀察研究昆蟲,發表過出色的論文,得到了達爾文的肯定,被譽為「無與倫比的觀察家」。
1875年,法布爾整理20餘年資料寫成《昆蟲記》第一卷。1880年,法布爾用積攢下的錢在南法塞西尼翁村買了一小塊地,並風雅地命名為「荒石園」。自此之後,他把大部分時間都消耗在了荒石園內,投注在了觀察與研究昆蟲上,而記錄著他觀察結果的《昆蟲記》也一卷又一卷地相繼問世。
直到1910年,法布爾完成了《昆蟲記》第十卷的寫作。《昆蟲記》在法國自然科學史與文學史上都具重要的地位,雨果稱法布爾是「昆蟲世界的荷馬」,法國文學界也贊譽他為「昆蟲世界的維吉爾」。
1915年,法布爾與世長辭。
『捌』 昆蟲毒素的概念是專業的 要寫論文用 謝謝!
指昆蟲產物(分泌物、排泄物、內含物等)或昆蟲體本身所具有的有害物質
『玖』 求有關昆蟲的英文文獻
研究昆蟲控制的文章
Athenix and Monsanto Announce Collaboration on Research for Insect Control
RESEARCH TRIANGLE PARK, N.C. and ST. LOUIS, June 20 /PRNewswire-FirstCall/ -- Athenix Corp. and Monsanto Company today announced they have entered into a three-year research collaboration for insect control on a key class of insects that affects a number of Monsanto's major crops of interest. Financial terms of the agreement were not disclosed.
"We are pleased to work with the market leader in crop genetics to bring our technical capabilities to commercialization," said Mike Koziel, chief executive officer for Athenix.
"Working with Monsanto to discover novel genes for controlling insect pests increases options for farmers and allows Athenix to demonstrate the power of its integrated discovery platforms for new biotech traits," said Nick Duck, vice president of research at Athenix.
Athenix will apply its expertise in microbial screening and genomics to facilitate gene discovery intended to help protect crops such as cotton, soybeans and corn against a common class of insects known as Hemipterans. Hemipteran insects include Lygus, a pest of cotton, and stinkbug, a pest of soybean.
"This collaboration will work to offer an essential benefit to our farmer customers by providing insect protection in crops such as corn, cotton and soybeans against the piercing and sucking insects. Insect tolerant crops allow growers to spray less pesticide, making their operations more efficient and at the same time stewarding the environment," said Robert T. Fraley, Ph.D., Monsanto executive vice president and chief technology officer. "We're excited to collaborate with Athenix to help broaden grower's options for insect control."
About Athenix:
Athenix is a leading biotechnology company that develops novel procts and technologies for agricultural and instrial applications, including biofuels and bioconversions. Athenix has established an outstanding intellectual property portfolio and market access ability around enhanced plants, microbes, genes, enzymes, and processes with emphasis on two major markets: 1) novel agricultural traits for growers such as insect resistance, nematode resistance, herbicide tolerance, and their use for the crop proction instry; and 2) the discovery of genes and proteins for use in the sustainable chemical instry with a focus on biofuels like ethanol and other natural procts.
Biological control of locusts
New weapons for old enemies
During the 1988 desert locust plague, swarms crossed the Atlantic from Mauritania to the Caribbean, flying 5 000 kilometres in 10 days.
Scientists were stumped because migrating swarms normally come down to rest every night. But locusts can』t swim, so how could it be?
It turned out that the swarms were coming down at sea – on any ships they could find, but also in the water itself. The first ones in all drowned but their corpses made rafts for the other ones to rest on.
Since the dawn of agriculture more than 10 000 years ago mankind has had to deal with a resourceful and fearless enemy, Schistocerca gregaria, the desert locust. Normally loners, every so often these natives of the deserts from West Africa to India turn into vast, voracious swarms that leave hunger and poverty behind them wherever they go.
Throughout history, farmers and governments have made attempts to repel the bands and swarms of locusts by collecting insects, creating noise, making smoke and burying and burning the insects. But all of this had little effect. With swarms sometimes extending for hundreds of kilometres, and containing billions of indivials, they conquered by sheer force of numbers.
Health concerns
It has long puzzled humans where these animals came from and where they survived. Only in the mid-20th century was it realized that the light brown solitary desert-dwelling insect was the same species as the red and yellow locusts of the plagues. Only when its biology was understood and chemical pesticides and aerial spraying became available a few decades ago, could efforts be made to control the insect. But large-scale pesticide use also raised real concerns for human health and the environment.
On the seventh-floor Emergency Centre for Locust Operations (ECLO) at FAO Headquarters in Rome, Keith Cressman, FAO's locust forecaster, checks current environmental conditions and locust population data from the three computer screens on his desk. The last big locust upsurge ended early in 2005 and the current alert level is green or calm.
The experts at FAO』s ECLO are readying to fight the next round in the age-old battle against locusts – wherever and whenever that may be.
「The next time,」 says Cressman, 「we』ll fight with new tools」.
New bio-control agents
Recent advances in biological control research, coupled with improved surveillance and intelligence, could make a big difference when the next round in the battle is fought. Such procts could make it possible to sharply rece the amount of chemical pesticides used.
One promising avenue is research currently under way at the International Centre for Insect Physiology and Ecology (ICIPE) in Nairobi. An ICIPE team headed by a Zanzibar-born chemical ecologist, Ahmed Hassanali, has identified and synthesized a specific locust pheromone, or chemical signal, that can be used against young locusts with devastating effect.
Phenylacetonitrile, or PAN for short, normally governs swarming behaviour in alt males who also use it to warn other males to leave them in peace while they mate. But, Hassanali found it has startlingly different results on juvenile wingless locusts, known as hoppers.
Hopper bands
Just as alt locusts form swarms, hoppers will, given the right conditions, stop behaving as indivials and line up in marauding bands up to 5 kilometres wide. They are only slightly less voracious than alts, who eat their own weight of food every day.
In three separate field trials – the most recent in Sudan last year – Hassanali』s team showed that even minute doses of PAN could stop hopper bands dead in their tracks and make them break ranks.
PAN caused the insects to resume solitary behaviour. Confused and disoriented, some lost their appetite altogether, while others turned cannibal and ate one other. Any survivors were easy prey for predators.
What makes PAN particularly attractive is that the dose needed is only a fraction – typically less than 10 millilitres per hectare – of the quantities of chemical or biological pesticides. This translates into substantially lower costs – 50 cents per hectare as opposed to US$12 for chemical pesticides and $15-20 for other bio-control agents.
That is clearly a major consideration in the countries in the front line – many of them among the world』s poorest.
Green Muscle
A different, but also highly effective biological approach is Green Muscle ®, a bio-pesticide developed by the International Institute for Tropical Agriculture』s biological control centre in Cotonou, Benin, and manufactured in South Africa.
Green Muscle ® contains spores of the naturally occurring fungus Metarhizium anisopliae var. acrim, which germinate on the skin of locusts and penetrate through their exoskeletons. The fungus then destroys the locust's tissues from the inside. This is definitely not good news for locusts, but the fungus has no effect on other life forms.
A proct similar to Green Muscle ® is already successfully used in Australia, but the latter's introction in Africa and Asia is being slowed by several factors. These include a need for further large-scale trials, official approval of the proct in several countries, and a relatively short shelf-life in its normal ready-to-spray liquid form. One drawback is that it takes days to kill the locusts. It is also relatively expensive and large-scale proction would need to be organized.
A solution would be to store the proct in powder form and dilute it just before use. Hassanali』s team has also shown that, if used in combination with a small amount of PAN, only a quarter of the normal dose of Green Muscle ® is needed.
Insect Growth Regulators
Also being readied for the modern locust fighter』s armoury is a class of procts known as Insect Growth Regulators, or IGRs, which influence the ability of hoppers to moult and grow properly. They have no direct toxic effects on vertebrates.
IGRs are effective for several weeks after application and can be used in so-called barrier treatments. In this method only narrow swathes of the proct are applied, perpendicular to the direction of the marching hopper bands. Only 10 percent of the amount used in blanket treatment is needed. After marching over one or two barriers the hoppers absorb enough proct to die while moulting.
As with PAN and Green Muscle ®, however, IGRs need to be aimed at locusts at an early stage in their lives, before they take to the air. That, in turn, requires an advanced level of surveillance and intelligence-gathering to make sure that any locust concentrations are nipped in the bud.
eLocust2
Although back at ECLO Keith Cressman has satellites, computers and mathematical models at his disposal, the weak link in the chain has been the time it takes to get good information from the field.
The mobile ground teams whose job it is to keep tabs on locust populations have to work in some of the world』s remotest, hottest and sometimes (for environmental and security reasons) most hostile places. A week or more might go by before a report from, say, the central Sahara, reached Cressman』s desk. By that time the locusts – 「They don』t need visas,」 he says – would quite likely have moved to another country or continent altogether.
This will soon change however. Field teams are now being issued with special hand-held devices to record vital locust and environmental data and relay them back to their own headquarters and on to Rome in real time.
Developed by the French Space Agency CNES, the eLocust2 device is able to bounce the information off communications satellites and have the data arrive in the National Locust Control Centre in the affected country a few minutes later, from where they are passed on to Cressman for analysis. In case of unusually heavy hopper concentrations, immediate action can be taken to make sure that the locusts never grow old enough to swarm.
Back to the field
Writing in Science magazine, locust expert Martin Enserink gave the following graphic description of a locust population gone out of control:
「On a beautiful November morning (in Morocco) it』s clear, even from afar, that something』s terribly wrong with the trees around this tiny village. They are covered with a pinkish-red gloss, as if their leaves were changing colour...
"As you get closer, the hue becomes a wriggling mass; a giant cap of insects on every tree, devouring the tiny leaves. Get closer still and you』ll hear a soft drizzle: the steady stream of locust droppings falling to the ground.」
Such nightmare visions, and locust plagues with them, may one day be a thing of the past.