1. 套筒數控加工工藝編程論文開題報告怎麼寫
自己從我這里購買一份完整的數控加工工藝編程論文即可或者我幫你做
2. 法蘭盤用鑽床鑽孔夾具設計
001 法蘭盤鑽3-直徑11孔夾具設計
【說明】該全套畢業設計作品包括:論文+源代碼+程序+開提報告+PPT答辨稿數據流程圖、功能模塊圖、運行界面圖、源代碼和程序,另附帶有開題報告、論文全文,按計算機畢業論文格式要求書寫,適用於計算機專業
【溫馨提示】為防止網路搜取本站內容,故論文只貼出部分!
信用說明
【AA101】副翼搖臂零件的機械加工工藝及銑槽夾具設計
【AA102】花鍵套零件的工藝規程及鑽4-M6孔的夾具設計
【AA103】曲柄板零件的工藝規程及銑A,B面的夾具設計
【AA104】曲柄板零件的工藝規程及銑上端面的夾具設計
【AA105】梳刀麻花架零件的工藝規程及鑽M10孔的工裝夾具設計
【AA106】支撐塊零件的工藝規程及鑽M16孔的的工裝夾具設計
【AA107】支座銑底面夾具設計
【AA108】軸承座零件的工藝規程及車Φ42孔的工裝夾具設計
【AA109】軸承座套零件的加工工藝規程
【AA110】撥叉831008鑽20孔夾具設計
【AA111】法蘭盤鑽3-直徑11孔夾具設計
3. 請問您那有關於液壓在汽車生產或汽車系統中應用的論文或者資料么 有的話給我發一個,感激不盡! 我的郵箱
第2章主減速器的結構設計過程
2.1 設計方案的確定
2.1.1 主減速比的計算
主減速比對於主減速器的結構形式、輪廓尺寸、質量大小以及當變速器處於最高單位時汽車的動力性和燃料經濟性都有直接影響。 的選擇應在汽車總體設計時和傳動系統的總傳動比一起由則和那個車動力計算來確定。可利用在不同的功率平衡圖來計算對汽車動力性的影響。通過優化設計,對發動機與傳動系參數作最佳匹配的方法來選擇 值,可是汽車獲得最佳的動力性和燃料經濟性。
為了得到足夠的功率兒使得最高車速稍微有所下降,一般選的比最小值大10%~25%,即按照下是選擇:
i =(0.377~0.472)
=(o.377~0.472) 0.5828 2400/(80 1 1 3.478)=1.478~2.23
式中:r ——車輪的滾動半徑
i ——變速器最高檔傳動比1.0(為直接檔)
i ——分動器或動力器的最高檔傳動比
i ——輪邊減速器的傳動比
2.1.2 主減速器結構方案的確定
(1)雙曲面齒輪具有一系列的優點,因此比螺旋齒輪應用更加廣泛。本次設計也採用雙曲面齒輪。
(2)主減速器主動錐齒輪的支撐形式及其安裝方式的選擇,本次設計用:主動錐齒輪:懸臂式支撐(圓錐滾子軸承)
從動錐齒輪:跨置式支撐(圓錐滾子軸承)
(3)從動錐齒輪的支撐方式和安裝方式的選擇
從動錐齒輪的兩端支撐多採用圓錐滾子軸承,安裝時應使它們的圓錐滾子大端相向朝內,而小端相向外。為了防止從動錐齒輪在軸向載荷作用下的偏移,圓錐滾子軸承應用兩端的調整螺母調整。主減速器從動錐齒輪採用無輻式結構並採用細牙螺釘以精度較高的緊配固定在差速器殼的凸緣上。
(4)主減速器的軸承預緊及齒輪嚙合調整
支撐主減速器的圓錐滾子軸承需要預緊以消除安裝的原始間隙、磨合期間該間隙的增大及增加支撐剛度。分析可知,當軸向力於彈簧變形呈線性關系時,預緊使軸向位移減小至原來的1/2。預緊力雖然可以增大支撐剛度,改善齒輪的嚙合和軸承工作條件,但當預緊力超過某一個理想值時,軸承壽命會急劇下降。主減速器軸承的預緊值可以取為發動機最大轉矩時換算做得軸向力的30%。
主動錐齒輪軸承預緊度的調整採用波形套筒,從動齒輪軸承預緊度的調整採用調整螺母。
(5)主減速器的減速形式 主減速器的減速形式分為單級減速、雙級減速、單級貫通、雙級貫通、主減速及其輪邊減速等。減速形式的選擇與汽車的類別及使用條件有關,有時也與製造廠的產品系列及其製造條件有關,但是它主要取決於由動力性、經濟性等整車性能所要求得主減速比的大小及其驅動橋下的離地間隙、驅動橋的數目及其布置形式等。通常主減速比不大於7.6的各種中小汽車上。
2.2 主減速器的基本參數選擇與設計計算
2.2.1 主減速器齒輪載荷的計算
通常是將發動機最大轉矩配以傳動系最低檔位傳動比時和驅動車輪打滑兩種情況作用下主減速器從動齒輪上的轉矩(T ,T )較小者,作為載貨汽車計算中用以驗算主減速器從動齒輪最大應力的計算載荷。即
式中:T ——發動機最大轉矩1070N*M
i ——由發動機所計算的主減速器從動齒輪之間的傳動系最低檔傳動比
根據同類型的車型的變速器傳動比選擇i =2.47
式中: ——上述傳動部分的效率,取 =0.9
k ——超載系數,取k =1.0
n——驅動橋數目2
G ——汽車滿載時驅動橋給水平地面的最大負荷,N;但是後橋來說還應該考慮到汽車加速時負荷增大值,但是可以取
,i ——分別為由所計算的主減速器從動齒輪到驅動輪之間的傳動效率和減速比,分別是0.96和3.478
由式(2—1),式(2—2)求得的計算載荷,是最大轉矩而不是正常持續轉矩,不能用它作為疲勞損壞依據。對於公路車輛來說,使用條件較非公路車輛穩定,其正常持續轉矩是根據所謂平均牽引力的值來確定的,即是主減速器的平均計算轉矩為
式中:G ——汽車滿載總重32000 9.8N
G ——所牽引的掛車滿載總重,N,僅用於牽引車取G =0
f ——道路滾動阻力系數,貨車通常取0.015~0.020,
f ——汽車正常使用時的平均爬坡能力系數。貨車通常取0.05~0.09,可以取f =0.07
f ——汽車性能系數
當
2.2.2 主減速器齒輪參數的選擇z
(1)齒數的選擇 對於單級主減速器,i 6時,z 的最小值可以取為5,但是為了嚙合平穩及提高疲勞強度,z 最好大於5.當i 較小時,z 可以取7~12,但是這時常常會因為主動齒輪、從動齒輪的尺寸太大而不能保證所要求橋下離地間隙為了磨合均勻,主動齒輪、從動齒輪的齒數之間應避免有公約數;為了得到理想的齒面重疊系數,其齒數之和對於載貨汽車應不少於40.多以取為z 17 ,z2為38.
(2)節圓直徑的選擇 根據從動錐齒輪大的計算轉矩(見式2—2,式2—3)並取兩者中較小的一個為計算依據,按照經驗公示選出:
式中:K ——直徑系數,取K =13~16
T ——計算轉矩,N*M,取T =T =2653.34N*M
計算得,d =137.74~169.52mm,考慮到此車是重型載重卡車,其經常工作在超載的情況下,初取d =286mm。
(3)齒輪斷面模數的選擇 d 選定後,可以按式m=
算出從動齒輪大端模數,m=5,並用下式校核
(4)齒面寬的選擇 汽車主減速器螺旋錐齒輪齒面寬度推薦為:F=0.155d =44.33mm,考慮其超載情況,可初取F=60mm。
(5)雙齒面齒輪的偏移距E 轎車、輕型客車和輕型載貨汽車主減速器的E值,不應超過從動齒輪節錐距A 的40%(接近於從動齒輪節圓直徑d 的20%);傳動比則E也越大,大傳動比的雙曲面齒輪傳動,偏移距E可達到從動齒輪節圓直徑d 的20%-30%。當E大於d 的20%時,應檢查是否發生根切。
(6)雙曲面齒輪的偏移方向 由從動齒輪的錐頂向其齒面看去並使主動齒輪右側,這時如果主動齒輪在從動齒輪下方時為下偏移。下偏移時主動齒輪的旋轉方向為左旋,從動齒輪為右旋。
(7)螺旋錐齒輪與雙曲面齒輪的螺旋方向 對著齒面看去,如果齒輪的彎曲方向從其小端到大端為順時針走向時則稱為右旋齒,反時針時則成為左旋齒。主從動齒輪螺旋方向是不同的。螺旋錐齒輪與雙曲面齒輪在傳動時所產生的軸向力,其方向決定於齒輪的螺旋方向和旋轉方向。判斷齒輪的旋轉方向是順時針還是逆時針時,要向齒輪背面看去。所以主動齒輪螺旋方向是左旋,旋轉方向是順時針。
(8)螺旋角的選擇 雙曲面齒輪傳動,由於有了偏移距而使主從動齒輪的名義螺旋角不等,且主動齒輪的大,而從動齒輪的小。螺旋角應滿足足夠大以使m =1.25.。因越大就越平穩雜訊就越低。螺旋角過大時會引起軸向力也越大因此有一個適當的范圍。
「格里森」制推薦用下式,近似的預選為主動齒輪螺旋角的名義值
式中: ——主動齒輪名義(中點)螺旋角的預選值
預選 後尚需要用刀號來加以校正。首先要求出近似刀號
近似刀號=
式中 , ——主、從動齒輪的齒根角,以「分」表示。
按照近似刀號選取與其最接近的標准刀號(計有:
然後按照選定的標准刀號反著算螺旋角 :
式中 標准刀號為3
最後選用的 與 之差不得超過5.
(9)齒輪法向壓力角的選擇 格里森規定載貨汽車和重型汽車則應該分別選用20 和22 30 的發向壓力角,對於雙曲面齒輪,由於其主動齒輪輪齒的法相壓力角不等,因此應按照平均壓力角考慮,載貨汽車選用22 30 的平均壓力角。
(10)銑刀盤名義直徑2r 的選擇 按照從動齒輪節圓直徑d 選取刀盤名義直徑r =152.4mm。
2.2.3 主減速器雙曲面齒輪的幾何尺寸計算與強度計算
有附錄1計算
(1) 主減速器圓弧齒雙曲面齒輪的幾何尺寸計算
雙重收縮齒的優點在於能夠提高小齒輪粗切工序。雙重收縮齒的齒輪參數,其大、小齒輪根錐角的選定是考慮到用一把使用上最大的刀頂距地粗切刀,切出沿著齒面寬的方向正確的吃後收縮來。當打齒輪直徑大於刀盤半徑時採用這種方法是最好的。
圓弧齒雙面齒輪的這一計算方法適用於軸交角為90 的所有傳動比,但是應該使z 6 , z + z 40。此計算方法限制用於格里森刀盤切齒。對於大齒輪直徑超過650mm或小齒輪軸線偏移距E大於100mm時候,必須另行考慮。
由附錄雙曲面齒輪計算用表第65項求的的齒輪線曲率半徑 r 與第7項選定的刀盤半徑r 的1%。否則需要重新計算20項至65項。如果r <r ,則需要將第20項的tan 的數值減小,重新計算各項,並將計算結果寫在第二行框內。若r >r ,則應增加tan 的數值。修正量是根據曲率半徑的差值來選出的。若無特殊考慮,則第二次計算可以求得tan 改變10%。如果第二次計算得出的r 新值仍不接近r ,就要進行第三次計算,通常也是最後一次計算,可用下式tan :
(2) 主減速器雙曲面齒輪的強度計算
1. 單位齒長的圓周力
p=
式中 p——單位齒長上的圓周力,N/mm
P——作用在齒輪上的圓周力,N,按照發動機最大轉
T 最大附著力矩兩種載荷工況進行計算
按照發動機最大轉矩計算時:
I檔時候p=507.344N/mm<(p) =1429N/mm
直接檔位時p=205.4024N*mm<(p) =250 N/mm
按照最大附著力矩計算時
可知,校核成功。
2.輪齒的彎曲強彎曲計算用綜合系數J度計算。汽車主減速器雙曲面齒輪輪齒的計算彎曲應力 (N/mm )為
式中 K ——超載系數1.0;
K ——尺寸系數K =
K ——載荷分配系數1.1~1.25
K ——質量系數,對於汽車驅動橋齒輪,檔齒輪接觸良好、節及徑想跳動精度高時,取1
J——計算彎曲應力用的綜合系數,見圖3—2.J =0.2 J =0.27
T 作用下:從動齒輪上的應力 =188.37MPa<700MPa;
T 作用下:從動齒輪上的應力 =160.36MPa<210.9MPa;
當計算主動齒輪時, 與從動相當,而J <J ,故 < ,
綜上所述,故所計算的齒輪滿足彎曲強度的要求。
汽車主減速器齒輪的損壞形式主要時疲勞損壞,而疲勞壽命主要與日常轉矩即平均計算轉矩T 有關,T 或T 只能用來檢驗最大應力,不能作為疲勞壽命的計算依據。
2. 輪齒的接觸強度計算 雙曲面齒輪齒面的計算接觸應力 (MPa)為:
式中 C ——材料的彈性系數,對於鋼制齒輪副取232.6N /mm
K =1 =1 K =1.11 K =1
K ——表面質量系數,對於製造精度的齒輪可取1
J ——計算應力的綜合系數,J =0.1875,見圖3—3所示
T ——主動齒輪計算轉矩,N/m
=1207.23MPa<( =1750MPa
=1226.86MPa<( =1750MPa,故負荷要求、校核合理。
2.3 主減速器齒輪的材料及熱處理
汽車驅動橋主減速器的工作相當繁重,與傳動系其他齒輪比較,它具有載荷大、工作時間長、載荷變化多、多沖擊等特點。其損壞的形式主要有齒根彎曲折斷、齒面疲勞點蝕(剝落)、磨損和擦傷等。據此對驅動橋齒輪的材料及熱處理應有以下要求:
(1) 具有高的彎曲疲勞強度和接觸疲勞強度以及較好的齒面耐磨性,故齒表面應有高的強度;
(2) 齒輪芯部應有適當的韌性以適應沖擊載荷,避免在沖擊載荷下輪齒根部折斷;
(3) 鋼材的鍛造、切削與熱處理等加工性能良好,熱處理變形小或變形規律性易控制,以提高產品質量、減少製造成本並降低廢品率;
(4) 選擇齒輪材料的合金元素時要適應我國的情況。例如:為了節約鎳、滒等我國發展了以錳、釩、錋、鈦、硅為主的合金結構剛系統。
汽車主減速器和差速器圓錐齒輪與雙曲面齒輪目前均用滲碳合金鋼製造。常用的鋼號20C M T ,20C M M ,20C N M ,20M VB,20M 2T B,本次設計中採用了20C M T 。
用滲碳合金鋼製造齒輪,經滲碳、淬火、回火後,齒輪表面硬度可高達HRC58~64,而芯部硬度較低,當m≤8時為HRC32~45。
對於滲碳深度有如下的規定:當端面模數m≤5時,為0.9~1.3mm
由於新齒輪潤滑不良,為了防止齒輪在運轉初期產生膠合、咬死或檫傷,防止早期磨損,圓錐齒輪與雙曲面齒輪副草熱處理及精加工後均予以厚度為0.005~0.010~0.020mm的磷化處理或鍍銅、鍍錫。這種表面鍍層不應用於補償零件的公差尺寸,也不能代替潤滑油。
對齒面進行噴丸處理有可能提高壽命達25%。對於滑動速度高的齒輪,為了提高其耐磨性進行滲流處理。滲流處理時溫度低,故不會引起齒輪變形。滲流後摩擦系數可顯著降低,故即使潤滑條件較差,也會防止齒輪咬死、膠合和檫傷現象產生。
2.4 主減速器的潤滑
主減速器及差速器的齒輪、軸承以及其他摩擦表面均需潤滑,其中尤其應注意主減速器主動錐齒輪的前軸承的潤滑,因為潤滑不能靠潤滑油的飛濺來實現。為此,通常是在從動齒輪的前端近主動齒輪處的主減速器殼的內壁上設一專門的集油槽,將飛濺到殼體內壁上的部分潤滑油收集起來再經過進油孔引至前軸承圓錐滾子的小端處,由於圓錐滾子在旋轉時的泵油作用,使潤滑油由圓錐滾子的下端通向大端,並經前軸承前端的回油孔流回驅動橋殼中間的油盆中,使潤滑油得到循環。這樣不但可使軸承得到良好的潤滑、散熱和清洗,而且可以保護前端的油封不損壞。為了保證有足夠的潤滑油流進差速器,有的採用專門的倒油匙。
為了防止因溫度升高而使主減速器殼和橋殼內部壓力增高所引起的漏油,應在主減速器殼上或橋殼上裝置通氣塞,後者應避開油濺所及之處。
加油 孔應設置在加油方便之處,油孔位置也決定了油麵位置。放油孔應設在橋殼最低處,但也應考慮到汽車在通過障礙時放油塞不易被撞掉。
結論
在本次畢業設計的過程中,我從實驗室開始自己動手拆裝主減速器及其內部的差速器等結構,一一熟悉再配合書本更加深刻的認識了本次設計的內容,熟悉了結構對於接下來的計算過程有很大的幫助,回想著拆裝過程我認真的選則零件,再驗證再選擇直到最後確定,有了准確的數據我就開始畫主減速器總成圖以及後來的幾個零件圖。
本次畢業設計,讓我增長了更多的知識,對驅動橋有了更進一步的認識,更加熟練地掌握了CAD及其我們機械行業常用的繪圖軟體,並且鍛煉了我的動手能力。
參考文獻
1 汽車工程手冊.北京:人民交通出版社,2001
2 劉惟信.汽車設計.清華大學出版社,2001
3 陳家瑞.汽車構造.北京:機械工業出版社,2005
4 王望予.汽車設計 第4版.北京:機械工業出版社,2007
5 韓曉娟.機械設計課程設計.北京:機械工業出版社,2000
6 劉哲義.一種新型汽車差速機構——托森差速器.汽車運輸,2000,13~14
7許鐵林.工程機械輪邊主減速器結構設計研究。工程機械,1997,32~42
8姚建平.裝載機驅動橋改進設計研究.工程機械,2005,33~45
9 許立中,龔景安.機械設計.北京:機械工業出版社,2003,45~71
10餘志生.汽車理論.北京:機械工業出版社,2003,66~70
11 Thomson Delmar Learning.Total Automotive Technology.北京:機械工業出版社,2004,14~22
12 Dohann F Hartk H Tube.Hydroforming—reseach and Practical Application.journal of Material Processing Technology,1997,21~25
13 Mortor.vehicle.science.Part2.CHAPMAN AND HALL Ltd,1982,61~92
14 Shichi Sano,Yoshimi furukawa,etc.Four Wheel Steering Vteering Vehile: Vehicle System Dynamic, 1993
15 Zoubir A M. The bootstrap.a powerful tool for statistical signal processing with small sample set.ICASSP—99Tutorial,1999,25~29
16 吳濤.AutoCAD教程.北京:清華大學出版社,北方交通大學出版社
課題名稱: 斯太爾聯軸式重型卡車後橋主減速器設計
一、綜述本課題國內外研究動態,說明選題的依據和意義
早在1890年法國的雷諾1號車,採用密閉箱式變速器、萬向節傳動軸和傘齒輪主減速器。而到了1898年,法國人路易斯.雷諾將萬向節首先應用汽車傳動系中,並發明了錐齒輪式主減速器。在現代汽車和重型卡車的驅動橋上,主減速器採用的最廣泛的是「格里森」(Glesson)制或者「奧利康」(Oerlikon)制的螺旋錐齒輪和雙曲面齒輪。雙曲面齒輪工作時,齒面間的壓力和滑動較大,齒面油膜易被破壞,必須採用雙曲面齒輪油潤滑,絕不允許用普通齒輪油代替,否則將使齒面迅速擦傷和磨損,大大降低使用壽命。主減速器是汽車傳動系中減小轉速、增大扭矩的主要部件。對發動機縱置的汽車來說,主減速器還利用錐齒輪傳動以改變動力方向。汽車正常行駛時,發動機的轉速通常在2000至3000r/min左右,如果將這么高的轉速只靠變速箱來降低下來,那麼變速箱內齒輪副的傳動比則需很大,而齒輪副的傳動比越大,兩齒輪的半徑比也越大,換句話說,也就是變速箱的尺寸會越大。另外,轉速下降,而扭矩必然增加,也就加大了變速箱與變速箱後一級傳動機構的傳動負荷。所以,在動力向左右驅動輪分流的差速器之前設置一個主減速器,可使主減速器前面的傳動部件如變速箱、分動器、萬向傳動裝置等傳遞的扭矩減小,也可變速箱的尺寸質量減小,操縱省力。改革開放開始時,中國汽車工業與發達國家汽車工業在技術上整體存在著30年左右的巨大差距。經過改革開放30年來的努力,通過引進技術與自主開放相結合,目前中國汽車工業在整體上與國際先進水平的技術差距已經縮短到5-10年。汽車零部件的研究與開發始終是中國汽車工業的最薄弱部分。雖然經過改革開放以來的不懈努力,進入21世紀後汽車零部件的研發有了較大進展,但與汽車業製造強國仍然有一定的差距,因此我們要好好內應力讓我國汽車製造業走向世界的步伐不斷加速
二、研究的基本內容,擬解決的主要問題
1、斯太爾重型載重卡車後橋主減速器的結構型式確定
2、斯太爾重型載重卡車後橋主減速器的結構設計
3、斯太爾重型載重卡車後橋差速器的結構設計
4、斯太爾重型載重卡車後橋主減速器零件設計
三、研究步驟、方法及措施研究步驟:
1、結構實習,了解斯太爾重型載重卡車後橋主減速器的結構型式
2、確定斯太爾重型載重卡車後橋主減速器的結構型式
3、測繪斯太爾重型載重卡車後橋主減速器
4、設計斯太爾重型載重卡車後橋主減速器的結構
5、設計斯太爾重型載重卡車後橋差速器的結構
6、設計斯太爾重型載重卡車後橋主減速器零件
四、研究工作進度
1—4周:結構實習,主減速器的結構型式確定,翻譯外文資料,撰寫開題報告和文獻綜述。
5—8周:主減速器測繪,主減速器結構設計。
9—12周:差速器結構設計,零件設計。
13—16周:撰寫畢業論文。
17—18周:准備答辯
五、主要參考文獻
1、汽車工程手冊.北京:人民交通出版社,2001
2、劉惟信.汽車設計.清華大學出版社,2001
3、陳家瑞.汽車構造.北京:機械工業出版社,2005
4、王望予.汽車設計 第4版.北京:機械工業出版社,2007
5、李釗剛.國內外工業工業齒輪減速器技術的發展——迎接WTO的挑戰與機遇(一),機械傳附錄2
課題名稱: 斯太爾聯軸式重型卡車後橋主減速器設計
一、課題國內外現狀
驅動橋作為汽車四大總成之一,它的性能的好壞直接影響整車性能,而對於載重汽車顯得尤為重要。當採用大功率發動機輸出大的轉矩以滿足目前載重汽車的快速、重載的高效率、高效益的需要時,必須要搭配一個高效、可靠的驅動橋。而主減速器和差速器是驅動轎的主件。主減速器是汽車傳動系中減小轉速、增大扭矩的主要部件,差速器的作用就是在向兩邊半軸傳遞動力的同時,允許兩邊半軸以不同的轉速旋轉,滿足兩邊車輪盡可能以純滾動的形式作不等距行駛,減少輪胎與地面的摩擦。
對於重型卡車來說,要傳遞的轉矩較乘用車和客車,以及輕型商用車都要大得多,以便能夠以較低的成本運輸較多的貨物,所以選擇功率較大的發動機,這就對傳動系統有較高的要求,而主減速器和差速器在傳動系統中起著舉足輕重的作用。隨著目前國際上石油價格的上漲,汽車的經濟性日益成為人們關心的話題,這不僅僅只對乘用車,對於載貨汽車,提高其燃油經濟性也是各商用車生產商來提高其產品市場競爭力的一個法寶,因為重型載貨汽車所採用的發動機都是大功率,大轉矩的,裝載質量在十噸以上的載貨汽車的發動機,最大功率在140KW以上,最大轉矩也在700N•m以上,百公里油耗是一般都在34升左右。為了降低油耗,不僅要在發動機的環節上節油,而且也需要從傳動系中減少能量的損失。在這一環節中,發動機是動力的輸出者,也是整個機器的心臟,而減速器和差速器則是將動力轉化為能量的最終執行者。因此,在發動機相同的情況下,採用性能優良的傳動系統便成了有效節油的措施之一。
二、研究主要成果
近些年來國內外一些高等院校和科研單位對以主減速器和差速器為主的驅動橋的改造做了大量的研究工作。東風汽車公司設計開發了一種輕微型混合動力電動汽車的動力總成。該動力總成能達到兩個動力源分別獨立輸出動力和混合輸出動力的目的,通過在變速箱輸出端增設主減速器,將動力輸出給差速器和傳動軸,最後到車輪。法拉利F430使用電子差速器(E-Diff)和F1變速箱及傳動裝置,E-Diff電子差速器已經在F1單座賽車上使用了多年,以保證轉彎時保持最大附著力,消除車輪空轉。在公路上,它在穩定汽車行駛性能方面,是一個不可思議的技術改進。電子差速器由三套主要子系統組成:與F1變速箱(如果有的話)共用的高壓液壓系統;由閥門、感測器和電子控制裝置組成的一套控制系統;裝在變速箱左側裡面的一套機械裝置。F430提供了一個新型的鑄鋁傳動箱,它可以將變速箱連同電子差速器、傘形主減速器以及機油箱都罩在一起。6速變速箱帶有多錐面同步器,同時,為了充分利用新引擎較高的動力和扭矩並確保可靠性,加長了第6擋齒輪和主減速器。
三、發展趨勢:
據了解,目前我國重卡大量使用的斯太爾驅動橋屬於典型的雙級減速橋,其二級減速的結構,主減速器總成相對較小,橋包尺寸減小,因此離地間隙加大,通過性好,承載能力也較大。廣泛用於公路運輸,以及石油、工礦、林業、野外作業和部隊等多種領域的車輛。不過,有專家認為,雙級減速橋的缺點也比較明顯:傳動效率相對較低,油耗高;長途運輸容易導致汽車輪轂發熱,散熱效果差,為了防止過熱發生爆胎,不得不增加噴淋裝置;結構相對復雜,產品價格高等。因此,在歐美重型汽車中採用該結構的車橋產品呈下降趨勢,日本採用該結構的產品更少。我國雙級橋使用比例下降也是必然的,專家預測今後幾年內,重型車橋將會形成以下產品格局:公路運輸以10 噸及以上單級減速驅動橋、承載軸為主;工程、港口等用車以10 噸級以上雙級減速驅動橋為主。技術方面,輕量化、舒適性的要求將逐步提高。
四、存在問題
汽車主減速器齒輪早期失效問題;汽車主減速器盆形齒輪熱處理致裂;主減速器在運行過程中產生的各種雜訊等等,最主要的是目前我國卡車中,雙級減速橋的應用比例還在60%左右,而雙級減速橋的缺點比較明顯:傳動效率相對較低,油耗高;長途運輸容易導致汽車輪轂發熱,散熱效果差,為了防止過熱發生爆胎,不得不增加噴淋裝置;結構相對復雜,產品價格高等。五、主要參考文獻
1 汽車工程手冊.北京:人民交通出版社.2001
2 劉惟信.汽車設計.清華大學出版社,2001
3 陳家瑞.汽車構造.北京:機械工業出版社,2005
4 王望予.汽車設計 第4版.北京:機械工業出版社,2007
5 韓曉娟.機械設計課程設計.北京:機械工業出版社,2000
6 余志生.汽車理論.北京:機械工業出版社,2003, 66~70
7 劉哲義.一種新型汽車差速機構——托森差速器.汽車運輸,2000,13~14
8 許鐵林.工程機械輪邊主減速器結構設計研究。工程機械,1997,32~42
9 姚建平.裝載機驅動橋改進設計研究.工程機械,2005,33~45
10 許立中,龔景安.機械設計.北京:機械工業出版社,2003,45~71
11 Thomson Delmar Learning.Total Automotive Technology.北京:機械工業出版社,2004,14~22
12 Dohann F Hartk H Tube.Hydroforming—reseach and Practical Application.journal of Material Processing Technology,1997,21~25
13 Mortor.vehicle.science.Part2.CHAPMAN AND HALL Ltd,1982,61~92
14 Shichi Sano,Yoshimi furukawa,etc.Four Wheel Steering Vteering Vehile: Vehicle System Dynamic, 1993
15 Zoubir A M. The bootstrap.a powerful tool for statistical signal processing with small sample set.ICASSP—99Tutorial,1999,25~29
4. 汽車檢測與維修技術畢業論文和開題報告
汽車檢測3分(內容豐富) 編輯詞條 摘要 汽車維修,就是對出現故障的汽車通過技術手段排查,找出故障原因,並採取一定措施使其排除故障並恢復達到一定的性能和安全標准。汽車維修包括汽車大修和汽車小修,汽車大修是指用修理或更換汽車任何零部件(包括基礎件)的方法,恢復汽車的完好技術狀況和完全(或接近完全)恢復汽車壽命的恢復性修理。而汽車小修是指:用更換或修理個別零件的方法,保證或恢復汽車工作能力的運行性修理。 編輯摘要目錄-[ 隱藏 ]1定義 2分類 3常見問題 編輯本段|回到頂部定義 汽車檢測 vehicle detection,是為確定汽車技術狀況或工作能力的檢查。
汽車在使用過程中,隨著使用時間的延長(或行駛里程的增加),其零件逐漸磨損、腐蝕、變形、老化,以及潤滑油變質等,致使配合副間隙變大,引起運動松曠、振動、發響和漏氣、漏水、漏油等,造成汽車技術性能下降。汽車維護作業(或稱汽車保養作業)的核心是「維護」汽車技術狀況的完好.就是通過清潔、 編輯本段|回到頂部分類 檢測的目的可分為安全環保檢測和綜合性能檢測兩大類。
( 1 )安全環保檢測。安全環保檢測是指對汽車實行定期和不定期安全運行和環境保護方面所進行的檢測。目的是在汽車不解體情況下建立安全和公害監控體系,確保車輛具有符合要求的外觀容貌和良好的安全性能,限制汽車的環境污染程度,使其在安全、高效和低污染工況下運行。
( 2 )綜合性能檢測。綜合性能檢測是指對汽車實行定期和不定期綜合性能方面的檢測。目的是在汽車不解體情況下,對運行車輛確定其工作能力和技術狀況,查明故障或隱患部位及原因,對維修車輛實行質量監督,建立質量監控體系,確保車輛具有良好的安全性、可靠性、動力性、經濟性、排氣凈化性和雜訊污染性,以創造更大的經濟效益和社會效益。 編輯本段|回到頂部常見問題 1、汽車技術狀況:定量測得的表徵某一時刻汽車外觀和性能的參數值的總和。
2、汽車檢測:確定汽車技術狀況或工作能力進行的檢查和測量。
3、汽車診斷:在不解體(或僅卸下個別小件)條件下,確定汽車技術狀況或查明故障部位、原因進行的檢測、分析與判斷。
4、汽車診斷參數包括工作過程參數、伴隨過程參數和幾何尺寸參數。
5、診斷參數的選擇原則:靈敏性、單值性、穩定性、信息性、經濟性6診斷標準的類型:國家、行業、地方、企業
7、診斷參數標準的組成:初始值Pf、許用值Pd和極限值Pn。
8、測量誤差的分類:按測量誤差的表示方法分為絕對和相對,按測量誤差出現的規律分為系統、隨機和過失,按測量誤差的狀態分為靜態和動態。
9、絕對誤差是測量值與被測量值之間的差值;相對誤差是測量值的絕對誤差與被測量值真值的比值,用百分比表示。
10、檢測設備一般採用最大引用誤差不能超過的允許值,作為劃分精度等級尺度,常見的精度等級有0.1、0.2、0.5、1.0、1.5、2.0、2.5、5.0
11、系統誤差:在同一測量條件下多次測量同一量時,測量誤差的大小和符號保持不變或按一定規律變化的誤差;隨機~:在同一測量條件下多次測量同一值時,誤差的大小和符號以不可預見的方式變化著的~
12、發動機總成(氣缸壓力表);底盤總成(前束尺);量具與計量儀表(電解液密度計、高頻放電叉)
13、檢測站的類型:按服務功能分( 安全~維修~ 綜合~);綜合檢測站按職能分(A級B級C級);安全~ :定期檢測車輛中與安全和環保有關的項目,以保證汽車安全行駛,並將污染降低到允許的限度;維修~:從車輛使用和維修的角度,擔負車輛維修前、後的技術狀況檢測;綜合~:既能擔負車輛管理部門的安全環保檢測,又能擔負車輛使用、維修企業的技術狀況診斷,還能承接科研或教學方面的性能試驗和參數測試;A級站:能全面承擔檢測站的任務;B 級站:能承擔在用車輛技術狀況和車輛維修質量的檢測;C級站:能承擔在用車輛技術狀況的檢測。
14、汽車資料輸入及安全裝置檢查工位:本工位除將汽車資料輸入登錄微機並發給檢測線主控制微機外,還進行汽車上部的燈光和安全裝置等項目的外觀檢查,可簡稱為L工位。側滑制動車速表工位:由側滑檢測、軸重檢測、制動檢測和車速表檢測組成,簡稱 ABS工位。燈光尾氣工位:主要由前照燈檢測、排氣檢測、煙度檢測和喇叭聲級檢測組成,簡稱HX~。車底檢查工位簡稱P~,本工位是車輛底部的外觀檢查,由檢測人員在地溝內人工檢查底盤各裝置及發動機的連接是否牢固可靠,有無彎扭斷裂、松曠及漏油、漏水、漏氣、漏電等現象。
15、軸制動力與軸荷的百分比=(左輪制動力+右輪~)/軸荷*100%
16、ABS工位檢測程序:1)四輪汽車(後驅、後駐):側滑—前制動—後制動—駐車制動—車速表2)四輪汽車(前驅、前駐):側滑—前制動—駐車制動—車速表—後制動3)四輪汽車(前驅、後駐):側滑—前制動—車速表—後制動—駐車制動。
17、示波器可顯示電壓隨時間變化的波形,是一種多用途的汽車檢測設備,可以用來顯示電火系波形、電子元器件波形、柴油機高壓油管波形和發動機異響波形等用途愈來愈廣泛。它的基本功能是顯示電壓隨時間的變化,除用於觀察狀態變化外,還可以檢測電壓、頻率和脈沖寬度等
18、氣缸密封性與氣缸、氣缸蓋、氣缸襯墊、活塞、活塞環和進排氣門等零件的技術狀況有關;氣缸密封性的診斷參數主要有氣缸壓縮壓力、曲軸箱漏氣量、氣缸漏氣量、氣缸漏氣率及進氣管真空度等。
19、氣缸壓力表檢測條件:發動機運轉至正常工作溫度。用起動機帶動帶動已拆除全部火花塞或噴油器的發動機運轉,其轉速應符合原廠的規定。
診斷參數標准:發動機各氣缸壓力應不小於原設計規定值的85%,每缸壓力與各缸平均壓力的差,汽油機應不大於8%。柴油機不大於10%;大修竣工發動機的氣缸壓力應符合原設計規定,每缸壓力與各缸平均壓力的差,汽油機不超過8%,柴油機不超過10%
20、FA觸點閉合後,先是產生二次閉合振盪,爾後二次電壓由一定負值逐漸變化到零
21 、發動機異響的類別:主要有機械異響,燃燒異響,空氣動力異響和電磁異響等。(1)機械異響主要是運動副配合間隙太大後配合表面有損傷運動中引起沖擊和振動造成的。(2)燃燒異響主要是發動機不正常燃燒造成的。(3)空氣動力異響主要是發動機在進氣口、排氣口行和運轉中的風扇處,因氣流振動而造成的。(4)電磁異響主要是發動機、電動機和某些電磁器件內,由於磁場的交替變化,引起機械中某些部件或某一部分空間產生振動而造成的。發動機的異響的影響因素有轉速、溫度、負荷和潤滑條件;汽油機過熱時,往往產生點火敲擊聲(爆燃或表面點火);柴油發動機溫度過低時,往往產生著火敲擊聲(工作粗暴)。
22、曲軸主軸承響:1)現象:汽車加速行駛或發動機突然加速時,發動機發出沉重而有力的「 鐺、鐺、鐺」或「剛、剛、剛」的金屬敲擊聲,嚴重時機體發生很大振動,響聲隨發動機轉速的提高而增大,隨負荷的增加而增強,產生響聲的部位在曲軸上與曲軸軸線齊平處,單缸斷火時響聲無明顯變化,相鄰兩缸同時斷火時,響聲明顯減弱或消失,溫度變化時響聲變化不明顯,響聲嚴重時,機油壓力明顯降低。2)原因:(1)曲軸主軸承蓋固定螺釘松動;(2)曲軸主軸承減磨合金燒毀或脫落(3)曲軸主軸承和軸頸磨損過甚、軸向止推裝置磨損過甚,造成徑向和軸向間隙過大(4)曲軸彎曲未得到校正,發動機裝合時不得不將某些主軸承與軸頸的配合間隙放大(5)機油壓力太低、黏度太小或機油變質。
23、曲軸連桿軸承響:1)現象:汽車加速行駛和發動機突然加速時,發動機發出「鐺,鐺。鐺」 連續明顯、輕而短促的金屬敲擊聲(主要特徵);連桿軸承嚴重松曠時,怠速運轉也能聽到明顯的響聲,且機油壓力降低;發動機溫度變化時,響聲變化不明顯;響聲隨發動機轉速的提高而增大,隨負荷的增加而增強,產生響聲的部位在曲軸箱上部;單缸斷火,響聲明顯減弱或消失,但復火時又重新出現,即具有所謂響聲「上缸」現象。2)原因:(1)曲軸連桿軸承蓋的固定螺栓松動或折斷(2)曲軸連桿軸承減磨合金燒毀或脫落(3)曲軸連桿軸承或軸頸磨損過甚,造成徑向間隙太大(4)曲軸內通連桿軸頸的油道堵塞(5)機油壓力太大、黏度太小或機油變質
24、傳動系游動角度,是離合器、變速器、萬向傳動裝置、驅動橋的游動角度之和,也稱為傳動系總游動角度。檢測方法有經驗檢查法和儀器檢查法;儀器檢測有指針式和數字式;指針式檢測儀由指針、刻度盤、測量扳手組成,數字式由傾角感測器和測量儀組成;經驗檢測法檢測步驟:用經驗檢測法檢查傳動系游動角時可分段進行,然後將各段涌動角度求和即可獲得傳動系總的游動角度。(1)離合器與變速器游動角的檢查:離合區處於結合狀態,變速器掛在要檢查的檔上,松開駐車制動器,然後在車下用手將變速器輸出軸上的凸緣盤或駐車制動盤從一個極端位置轉到另一個極端位置,兩個極端位置之間的轉角即為在該檔下從離合器至變速器輸出端的游動角度。依次掛入每一檔,可獲得各檔下的這一游動角度。(2)萬向傳動裝置游動角度的檢查:支起驅動橋,拉緊駐車制動器,然後在車下用手將驅動橋凸緣盤從一個極端位置轉到另一個極端位置,兩極端位置之間的轉角即為萬向傳動裝置的游動角度。(3)驅動橋游動角的檢查:松開駐車制動器,變速器置空檔位置,驅動橋著地或處於制動狀態,然後在車下將驅動橋凸緣盤從一個極端位置轉到另一個極端位置,兩極端位置之間的轉角即為驅動橋的游動角度。以上三段即為傳動系的游動角度。
25、傾角感測器其作用是將感測器外殼隨傳動軸游動之傾角轉換為相應頻率的電振盪。
26、游動角度參考:離合器與變速器<<=5~15度,驅動橋<<=55~65度,萬向傳動裝置<<=5~6度,傳動系<<=65~86度。
27、轉向盤自由行程過大:1)現象:汽車靜止,兩前輪保持直線行駛位置不動,輕輕來回轉動轉向盤,感到游動角很大;2)原因:(1)轉向盤與轉向軸的連接松曠(2)轉向盤內主、從嚙合部位松曠或主、從動部分的軸承松曠(3)轉向器垂臂軸與垂臂的連接松曠(4)縱、橫轉向拉桿的球頭連接松曠(5)縱、橫轉向拉桿臂與轉向節的連接松曠(6)轉向節與主銷配合松曠(7)輪轂軸承松曠
28、轉向沉重:1)現象:汽車行駛中駕駛員向左、右轉動轉向盤時,感到沉重費力,無回正感;汽車低速轉彎或掉頭時,轉動轉向盤更加費力;2)原因(1)輪胎氣壓不足(2)轉向器主動部分軸承預緊力太大或從動部分(垂臂軸)與襯套配合太緊(3)轉向器主、從動部分嚙合調整太緊(4)轉向器無油或缺油(5)轉向節與主銷配合太緊或缺油(6)轉向節止推軸承缺油或損壞(7)縱、橫轉向拉桿的球頭連接調整太緊或缺油(8)與轉向盤連接的轉向軸彎曲或其套管凹癟,造成刮碰(9)主銷後傾過大、內傾過大或前輪負外傾(10)前梁、車架變形,造成前輪定位失准
29、自動跑偏:1)現象:汽車行駛中自動跑向一邊,必須用力把住轉向盤才能保持直線行駛2)原因:(1)兩前輪輪胎氣壓不等、直徑不一或車廂裝載不均(2)兩前輪輪轂軸承或輪轂油封的松緊度不一(3)兩前輪外傾角、主銷後傾角、主銷內傾角不等或前輪前束在兩前輪上分配不均(4)左右鋼板彈簧撓度不等或彈力不一(5)前梁、後橋軸管或車架發生水平平面的彎曲(6)車架兩邊的軸距不等(7)前後橋兩端的車輪有單邊制動或單邊制動拖滯現象(8)前輪前束太小或負前束(9)路面拱度太大或有側向風
30、車輪定位的檢測,包括轉向輪(通常是前輪)定位的檢測和非轉向輪(通常為後輪)定位的檢測。轉向輪和非轉向輪定位的檢測,也即前輪和後輪定位的檢測,統稱為四輪定位的檢測。前輪定位包括前輪外傾、前輪前束、主銷後傾和主銷內傾,是評價汽車前輪直線行駛穩定性、操控穩定性、前軸和轉向系技術狀況的重要診斷參數,後輪定位主要有後輪外傾和後輪前束,可用來評價後輪的直線行駛穩定性和後軸的技術狀況
31、靜態檢測法;是在汽車靜止的狀態下,根據車輪旋轉平面與各車輪定位間存在的直接或間接的幾何關系,用專用檢測設備對車輪定位進行幾何角度的測量。使用的檢測設備一般有氣泡水準式、光學式、激光式、電子式和微機式等前輪定位儀或四輪定位儀;動態檢測法:是在汽車以一定車速行駛的狀態下,用檢測設備檢測車輪定位產生的側向力或由此引起的車輪側滑量。
32、氣泡水準車輪定位儀按適用車型範圍可分為兩種:一種適用於大、中、小型汽車,另一種適用於小型汽車。前者一般由水準儀、支架、轉盤(又稱轉角儀)等組成;後者一般由水準儀和轉盤組成。轉盤一般由固定盤、活動盤、扇形刻度尺、游標指示針、鎖止銷和若干滾珠等組成,滾珠裝於固定盤與活動盤之間。
33、前輪最大轉角的檢測:是指前輪處於直線行駛位置時,分別向左、右轉向至極限位置的角度。由於有些汽車轉向器和縱拉桿布置在車架的一側,為防止輪胎碰擦,因而向左、右的最大轉角是不相等的。檢測方法如下:(1)找正前輪直線行駛位置後,置轉盤扇形刻度尺於零位並固定之(2)轉動轉向盤使前輪向任一側轉至極限位置,從扇形刻度尺上讀出並記錄轉角值,並與原廠規定值對照。不符合要求的前輪最大轉角,可通過調整轉向節上的限位螺釘,直至符合要求為止(3)轉動轉向盤使前輪向另一側轉至極限位置,用上述同樣的方法可測得另一側的前輪最大轉角值,並視必要調整之。
34、四輪定位儀可檢測的項目包括:前輪前束、前輪外傾、主銷後傾、主銷內傾、後輪前束、後輪外傾、輪距、軸距、後軸推力角和左右軸距差
35、轉向盤自由轉動量,是指汽車轉向輪保持直線行駛位置靜止時,輕輕左右晃動轉向盤所測得的游動角度。轉向盤的轉向力,是指在一定行駛條件下,作用在轉向盤外緣的圓周力。
診斷參數標准:1)轉向盤自由轉動量:機動車轉向盤的最大自由轉動量從中間位置向左或向右的轉角均不得大於。(1)最大設計車速大於或等於100km/h的機動車為10度(2)最大設計車速小於100km/h的機動車(三輪農用運輸車除外)為15 度(3)三輪農用運輸車為22.5度;2)轉向盤轉向力:機動車在平坦、硬實、乾燥和清潔的水泥或瀝青道路上行駛,以10km/h的速度在5s之內沿螺旋線從直線行駛過度到直徑為24m的圓周行駛,施加於轉向盤外緣的最大切向力不得大於245N
36、車輪動不平衡:即使靜平衡的車輪,即重心與旋轉中心重合的車輪,也可能是動不平衡
37、車輪不平衡的原因:1)輪轂、制動鼓(盤)加工時軸心定位不準、加工誤差大、非加工面鑄造誤差大、熱處理變形、使用中變形或磨損不均2)輪轂螺栓質量不等、輪轂質量分布不均或徑向圓跳動、端面圓跳動太大3)輪胎質量分布不均、尺寸或形狀誤差太大、使用中變形或磨損不均、使用翻新胎或墊、補胎4)並裝雙胎的充氣嘴未相隔180度,單胎的充氣嘴未與不平衡點標記相隔180安裝5)輪轂、制動鼓、輪胎螺栓、輪輞、內胎、襯帶、輪胎等拆卸後重新組裝成輪胎時,累計的不平衡質量或形位偏差太大,破壞了原來的平衡。
38、車輪平衡機的類型:按功能分為車輪靜平衡機和車輪動平衡機;按測量方式分離車式和就車式~;按車輪平衡機轉軸的形式分軟式和硬式車輪~
39、用就車式車輪平衡機檢測車輪靜不平衡的原理:支離地面的車輪如果不平衡,轉動時產生的上下振動通過轉向節或懸架傳給檢測裝置的感測磁頭、可調支桿和底座內的感測器。感測器變成的電信號控制頻閃燈閃光,以指示車輪不平衡點位置,並輸入指示裝置只是不平衡度。當感測磁頭傳遞向下的力時頻閃燈就發亮,所照射的車輪最下部的點即為不平衡點。當不平衡點的質量越大時,感測器的受力也越大,變換的電量也越大,指示裝置指示的數值也越大。
40、用就車式車輪平衡機檢測車輪動不平衡的原理和靜不平衡原理相同,只不過感測器磁頭固定在制動地板上,檢測的是橫向振動。橫向振動通過感測器磁頭、可調支桿傳至底座內的感測器,感測器轉變成的電信號控制頻閃燈閃光,以指示車輪不平衡點位置,並輸入到指示裝置指示車輪不平衡度。
41、車輪動平衡機的平衡重也稱配重,通常有卡夾式和粘帖式兩種類型
42、制動跑偏:1)現象:汽車行車制動時,車輛行駛方向發生偏斜;汽車緊急制動時,車輛出現扎頭或甩尾現象。2)原因:(1)左右車輪制動蹄摩擦片材料不一或新舊程度不一(2)左右車輪制動蹄摩擦片與制動鼓的靠合面積不一、靠合位置不一或制動間隙不一(3)左右車輪制動輪缸的技術狀況不一,造成起作用時間不一或張開力大小不一(4)左右車輪制動蹄回位彈簧拉力不一……………..
43、驅動車輪輸出功率的檢測,即底盤測功。底盤測功的目的。一是為了獲得驅動車輪的輸出功率或驅動力,以便評價汽車的動力性;二是用獲得的驅動車輪輸出功率與發動機飛輪輸出功率進行對比,求出傳動效率,以便判定底盤傳動系的技術狀況
44、底盤測功試驗台的類型:按測功裝置中測功器形式不同,分為水力式、電力式和電渦流式;按測功裝置中測功器冷卻方式分為風冷式、水冷式和油冷式;按滾筒裝置承載能力分為小型(~3T》)、中型(3~6)、大型(6~10)和特大型式(10~)
45、車用油耗計一般由感測器和計量顯示儀表,二者採用電纜線連接,分為容積式(膜片式、量管式和活塞式)和質量式。四活塞式車用油耗計的感測器由流量測量機構和信號轉換機構組成
46、安裝方法:將油耗計感測器串接在燃料系供油管路上:化油器式汽油機應串接在汽油泵與化油器之間;柴油機應串接在柴油濾清器與柴油泵之間,從高壓回油管和低壓回油管流回的燃料應接在油耗計感測器與噴油泵之間,以免重復計量;電控燃油噴射發動機應串接在燃油濾清器與燃油分配管之間,從燃油壓力調節器經回油管流回燃油箱應改接在油耗計感測器與燃油分配管之間,避免重復計量。
47、氣體分離器簡圖;當混有氣體的燃油進入氣體分離器浮子室時,氣體會迫使浮子室內的油平面下降,使針閥打開,氣體排入大氣,從出油管進入感測器的燃油便沒有氣體了,使測量精度提高。
48、側滑試驗台是測量汽車前輪橫向滑動量並判斷是否合格的一種檢測設備,有滑板式有滾筒式之分。側滑試驗台檢測側滑量的主要目的是為了確知前輪前束和車輪外傾的配合是否恰當。滑板試驗台就是利用上述滑動板在側向力作用下能夠橫向滑動的原理來測量前輪側滑量的。前輪外傾(或負外傾)對滑動板的作用,不管車輛前進還是後退,其側滑量相等且側滑方向一致;前輪前束(或負前束)對滑動板的作用,在車輛前進和後退時,雖側滑量相等但側滑方向相反。
49、按國家標准用側滑試驗台檢測前輪側滑量,其值不超過5m/km;機動車可以用制動距離、制動減速度和制動力檢測制動性能,其中其中之一符合要求,即判為合格
50、檢測後軸技術狀況;除一部分汽車的後輪也有前束和外傾外,相當一部分汽車的後輪是沒有定位的。可用側滑試驗台按下列方法檢測後軸是否彎曲變形和輪轂軸承是否松曠。1)使汽車後輪從側滑試驗台滑動板上前進和後退駛過,如兩次側滑量讀數均為零,表明後軸無任何彎曲變形2)如兩次側滑量讀數不為零,且前進和後退駛過側滑板後,側滑量讀數相等而側滑方向相反,表明後軸在水平平面內發生彎曲a若前進時滑動板向外滑動,後退時又向內滑動,說明後軸端部在水平平面內向前彎曲b若前進時滑動板向內滑動,後退時又向外滑動,說明後端部在水平平面內向後彎曲3)如兩次側滑量讀數不為零,且前進和後退駛過側滑板後,側滑量讀數相等而側滑方向相同,表明後軸在垂直平面內放生彎曲a若滑動板向外滑動,說明後軸端部在垂直平面內向上彎曲b若滑動板向內滑動,說明後軸端部在垂直平面內向下彎曲4)後輪多次駛過側滑試驗台滑動板,每次讀數不相等,說明輪轂軸承松曠
51、制動減速度按測試、取值和計算方法的不同分為制動穩定減速度、平均減速度和充分發出的平均減速度。對於路試檢驗制動性能採用充分發出的平均減速度FMDD這一評價指標
52、路試法的缺點:(1)路試法只能測出整車的制動性能,而對於各輪制動性能的差異雖能從拖、壓印作出定性分析,但無法獲得定量數據。(2)對於制動性能不合格的車輛,不一診斷故障發生的具體部位。(3)制動距離的長短和制動減速度的大小,往往因為駕駛員操作方法、路面狀況和車馬行人狀況而異,重復性差。(4)除道路條件外,路試還將受到氣候條件等的限制。且又發生事故的危險(5)路試法消耗燃料、磨損輪胎,且對全車各部機件都有不良影響。由於試驗台檢測制動性能具有迅速經濟、安全、不受外界自然條件地限制,以及試驗重復性好和能定量地指示出各輪的制動力或制動距離等優點,因而廣泛使用。
53、制動試驗台的類型:按試驗台測量原理不同分為反力式和慣性式,按試驗台支承車輪形式不同分為滾筒式和平板式,按試驗台檢測參數不同分為測制動力式、測制動距離式和多功能式,按試驗台測量裝置至指示裝置傳遞信號方式不同分為機械式、液力式和電力式,按試驗台同時能測車軸數不同分為單軸式、雙軸式和多軸式
54、反力式滾筒制動試驗台的測量裝置由測力杠桿、測力感測器和測力彈簧等組成:驅動裝置由電動機、減速器和鏈傳動等組成。
55、制動協調時間是指在急踩制動時,從踏板開始動作至車輛減速度(或制動力)達到規定的車輛充分發出的平均減速度75%時所需的時間
5. 自由鍛件在結構上有什麼要求
畢業設計 鍛件的結構設計與工藝性分析,正文共60頁,19436字,附開題報告、答辯文稿、外文翻譯、設計圖紙。
摘 要
目前國內外的鍛造方法主要的仍然是自由鍛和模鍛,工業發達國家的模鍛大大超過自由鍛。因為模鍛生產率高,鍛件尺寸精度高,材料利用率高,纖維組織沿鍛件輪廓分布,故力學性能好,故強度高,耐沖擊抗疲勞。如果能結合胎膜鍛、型砧鍛,其經濟效益會顯著提高,「鍛壓」是人類發明的最古老的生產技術之一,也是機械製造業中重要的技術之一。它包含了鍛造和沖壓技術,以及與之相關的塑性變形技術。鍛造作為金屬加工的主要方法和手段,因此鍛造工藝是發展趨勢,鍛造加工能保證金屬纖維組織的連續性,使鍛件的纖維組織與鍛件外形保持一致,金屬流線完整,可保證零件具有良好的力學性能與長的使用壽命,鍛件是機器中負重載荷的零件,特別適合結構尺寸小而載荷大或受疲勞載荷的零件。不懂鍛件設計就有可能違反鍛造原理和鍛造結構工藝性,輕則延長零件的生產周期鍛造加工能保證金屬纖維組織的連續性,使鍛件的纖維組織與鍛件的外形保持一致,金屬流線完整,可保證零件具有良好的力學性能與長的使用壽命,增加製造困難,增加成本;重則可能無法把您設計的零件鍛造出來。本設計將通過對各種鍛件的具體案例的結構設計及其工藝性進行分析,把握鍛件的結構設計及其工藝性的製造規律,並通過其規律的把握,達到靈活運用製造技術,合理設計零件結構及其工藝的目的。
關鍵詞:自由鍛;模鍛;鍛造工藝;胎膜鍛;結構
目 錄
摘 要 I
Abstract II
前 言 1
第1章 緒論 3
1.1 目前鍛件的應用 3
1.2 目前國內外發展概況和發展趨勢 4
第2章 鍛件的結構設計及工藝性分析 5
2.1 對鍛造零件結構工藝性的要求 5
2.2 鍛件組織特點 5
2.3 鍛件的結構工藝性 5
2.3.1自由鍛件的結構工藝性 5
2.3.2 模鍛件的結構工藝性 9
第3章 鍛件的結構設計錯誤示例及其改進 12
3.1 模鍛件的分模位置問題 12
3.1.1 上下對稱鍛件的分模位置不應選在上平面或下平面 12
3.1.2 傾斜鍛件不宜採用折線分模 13
3.1.3 左右對稱的鍛件,分模面不宜選在過度截面上 14
3.1.4 高度小於或者等於台階直徑的圓餅類鍛件,不宜軸向分模 15
3.1.5 頭部較大的軸類鍛件不宜直線分模 16
3.2 模鍛件的模鍛斜度問題 17
3.2.1 模膛內側不能與分模面垂直 17
3.2.2 同一鍛件的內模斜度不應比外模斜度小 18
3.2.3 同一鍛件上不宜出現多種模鍛斜度 20
3.2.4 分模面兩側的模鍛斜度不能相互錯開 21
3.3 零件上過於復雜的部分不要鍛出,應合理設計余塊 21
3.3.1 對於有凸緣的鍛件 22
3.3.2對於有難成形的復雜形狀的鍛件 23
3.3.3 對於零件相鄰台階直徑相差不大的鍛件 25
3.4 需增設定位塊的錘上模鍛件 26
3.5 模鍛件連皮的問題 27
3.5.1 沖孔連皮不能太薄,也不宜太厚 27
3.5.2 鍛件內孔較大時,不宜用平底連皮 28
3.5.3 鍛件上的小孔不宜鍛出連皮, 只進行壓凹 29
3.6 對於法蘭較薄的鍛件,在鍛件兩側各增加一塊工藝凸台敷料 31
3.7 合理確定鍛件的分合 32
3.7.1 單拐曲線兩件合鍛 32
3.7.2 軸套類零件兩件合鍛 33
3.7.3 復雜模鍛件的分鍛 34
3.7.4 有驟變橫截面模鍛件的分鍛 35
3.8 合理確定鍛件的凸肩 36
3.8.1 凸肩與鍛件直徑相差不大時不宜鍛出凸肩 36
3.8.2 高度過小的凸肩不要鍛出 37
3.9 自由鍛件結構應力求簡單 38
3.9.1 自由鍛件應盡量避免有錐形和斜度平面 38
3.9.2 自由鍛件應避免兩曲面或曲面與稜柱面交接 40
3.9.3 自由鍛件應避免加強筋 41
3.9.4 自由鍛件不允許在基體上或在叉件內側有凸台 42
3.9.5 大型鍛件台階余面的重量不能忽視,鍛造設備不能選擇過大,也不能選擇太小 43
3.10 孔徑小於30mm的孔,不宜鍛出 45
3.11 模鍛件應盡可能直接模鍛成形 46
3.12 加大連接板的厚度 47
3.13 復雜鍛件應成對稱形狀,可使模具和夾具通用 48
3.14 合理選擇鍛件上的倒圓半徑 49
3.15 不能忽視預鍛成型 50
3.16 平鍛機上終鍛成形時的沖孔芯料不能太薄 51
3.17 合理安排毛刺、飛邊的位置 52
第4章 結論 54
參 考 文 獻 55
致 謝 56