當前位置:首頁 » 論文題目 » 邊緣檢測開題報告
擴展閱讀
中國網路原創新人樂團 2021-03-31 20:26:56
黨政視頻素材 2021-03-31 20:25:44
廈門大學統計學碩士 2021-03-31 20:25:36

邊緣檢測開題報告

發布時間: 2021-03-26 23:40:30

❶ 求畢業設計開題報告

這個都不想自己做?哥們服了~~~~~~

❷ zernike矩的介紹

Zernike矩是基於 Zernike多項式的正交化函數,所利用的正交多項式集是 1個在單位圓內的完備正交集。當計算 1幅圖像的 Zernike矩時 ,以該圖像的形心 (也稱作重心 )為原點 ,把像素坐標映射到單位圓內。Zernike矩是復數矩 ,一般把 Zernike矩的模作為特徵來描述物體形狀。1個目標對象的形狀特徵可以用 1組很小的 Zernike矩特徵向量很好的表示,低階矩特徵向量描述的是 1幅圖像目標的整體形狀,高階矩特徵向量描述的是圖像目標的細節。

❸ 圖像邊緣檢測演算法的研究與實現 的開題報告

摘 要 針對基於PC實現的圖像邊緣檢測普遍存在的執行速度慢、不能滿足實時應用需求等缺點,本文藉助於TI公司的TMS320DM642圖像處理晶元作為數字圖像處理硬體平台,DSP/BIOS為實時操作系統,利用CCS開發環境來構建應用程序;並通過攝像頭提取視頻序列,實現對邊緣檢測Sobel運算元改進[1]。
關鍵詞 DM642;Sobel運算元;程序優化;圖像邊緣檢測

1 引言
邊緣是圖像中重要的特徵之一,是計算機視覺、模式識別等研究領域的重要基礎。圖像的大部分主要信息都存在於圖像的邊緣中,主要表現為圖像局部特徵的不連續性,是圖像中灰度變化比較強烈的地方,也即通常所說的信號發生奇異變化的地方。經典的邊緣檢測演算法是利用邊緣處的一階導數取極值、二階導數在階梯狀邊緣處呈零交叉或在屋頂狀邊緣處取極值的微分演算法。圖像邊緣檢測一直是圖像處理中的熱點和難點。
近年來,隨著數學和人工智慧技術的發展,各種類型的邊緣檢測演算法不斷涌現,如神經網路、遺傳演算法、數學形態學等理論運用到圖像的邊緣檢測中。但由於邊緣檢測存在著檢測精度、邊緣定位精度和抗雜訊等方面的矛盾及對於不同的演算法邊緣檢測結果的精度卻沒有統一的衡量標准,所以至今都還不能取得令人滿意的效果。另外隨著網路和多媒體技術的發展,圖像庫逐漸變得非常龐大;而又由於實時圖像的目標和背景間的變化都不盡相同,如何實現實時圖像邊緣的精確定位和提取成為人們必須面對的問題。隨著DSP晶元處理技術的發展,尤其是在圖像處理方面的提高如TMS320C6000系列,為實現高效的、實時的邊緣檢測提供了可能性[5]。在經典的邊緣檢測演算法中,Sobel邊緣檢測演算法因其計算量小、實現簡單、處理速度快,並且所得的邊緣光滑、連續等優點而得到廣泛的應用。本文針對Sobel演算法的性能,並藉助於TMS320DM642處理晶元[3],對該邊緣檢測演算法進行了改進和對程序的優化,滿足實時性需求。
2 Sobel邊緣檢測演算法的改進
經典的Sobel圖像邊緣檢測演算法,是在圖像空間利用兩個方向模板與圖像進行鄰域卷積來完成的,這兩個方向模板一個是檢測垂直邊緣,一個是檢測水平邊緣。演算法的基本原理:由於圖像邊緣附近的亮度變化較大,所以可以把那些在鄰域內,灰度變化超過某個適當閾值TH的像素點當作邊緣點。Sobel演算法的優點是計算簡單,速度快。但由於只採用了兩個方向模板,只能檢測水平方向和垂直方向的邊緣,因此,這種演算法對於紋理較復雜的圖像,其邊緣檢測效果欠佳;同時,經典Sobel演算法認為,凡灰度新值大於或等於閾值的像素點都是邊緣點。這種判定依據是欠合理的,會造成邊緣點的誤判,因為多雜訊點的灰度新值也很大。
2.1 圖像加權中值濾波
由於圖像中的邊緣和雜訊在頻域中均表現為高頻成分,所以在邊緣檢測之前有必要先對圖像進行一次濾波處理,減少雜訊對邊緣檢測的影響。中值濾波是一種非線性信號的處理方法[2],在圖像處理中,常用來保護邊緣信息;保證濾波的效果。加權中值濾波,首先對每個窗口進行排序,取適當的比例,進行曲線擬合,擬合後的曲線斜率表徵了此窗口的圖像特徵,再根據圖像各部分特性適當的選擇權重進行加權。
2.2 增加方向模板
除了水平和垂直兩方向外,圖像的邊緣還有其它的方向,如135o和45o等,為了增加運算元在某一像素點檢測邊緣的精度,可將方向模板由2個增加為8個即再在經典的方向模板的基礎上增加6個方向模板,如圖1所示。
2.3 邊緣的定位及雜訊的去除
通常物體的邊緣是連續而光滑的,且邊緣具有方向和幅度兩個特徵,而雜訊是隨機的。沿任一邊緣點走向總能找到另一個邊緣點,且這兩個邊緣點之間的灰度差和方向差相近。而雜訊卻不同,在一般情況下,沿任一雜訊點很難找到與其灰度值和方差相似的雜訊點[4]。基於這一思想,可以將雜訊點和邊緣點區分開來。對於一幅數字圖像f(x,y),利用上述的8個方向模板Sobel運算元對圖像中的每個像素計算,取得其中的最大值作為該點的新值,而該最大值對應的模板所表示的方向為該像素點的方向。若|f(x,y)-f(x+i,y+j)|>TH2,對於任意i=0,1,-1;j=0,1,-1均成立,則可判斷點(x,y)為雜訊點。圖2給出了圖像邊緣檢測系統改進演算法的軟體流程圖。

圖1 邊緣檢測8個方向模板

圖2 系統結構圖
3 基於TMS320DM642的圖像處理的設計及演算法優化
3.1 TMS320DM642功能模塊及圖像處理系統的硬體結構
DSP以高速數字信號處理為目標進行晶元設計,採用改進的哈佛結構(程序匯流排和數據匯流排分開)、內部具有硬體乘法器、應用流水線技術、具有良好的並行性和專門用於數字信號處理的指令及超長指令字結構(VLIW)等特點;能完成運算量大的實時數字圖像處理工作。
TMS320DM642是TI公式最近推出的功能比較強大的TMS320C6x系列之一,是目前定點DSP領域里性能較高的一款[6]。其主頻是600MHz,8個並行運算單元、專用硬體邏輯、片內存儲器和片內外設電路等硬體,處理能力可達4800MIPS。DM642基於C64x內核,並在其基礎上增加了很多外圍設備和介面,因而在實際工程中的應用更為廣泛和簡便。本系統使用50 MHz晶體震盪器作為DSP的外部時鍾輸入,經過內部鎖相環12倍頻後產生600 MHz的工作頻率。DM642採用了2級緩存結構(L1和L2),大幅度提高了程序的運行性能。片內64位的EMIF(External Memory Interface)介面可以與SDRAM、Flash等存儲器件無縫連接,極大地方便了大量數據的搬移。更重要的是,作為一款專用視頻處理晶元,DM642包括了3個專用的視頻埠(VP0~VP2),用於接收和處理視頻,提高了整個系統的性能。此外,DM642自帶的EMAC口以及從EMIF 口擴展出來的ATA口,還為處理完成後產生的海量數據提供了存儲通道。
本系統是採用瑞泰公司開發的基於TI TMS320DM642 DSP晶元的評估開發板——ICETEK DM642 PCI。在ICETEK DM642 PCI評估板中將硬體平台分為五個部分,分別是視頻採集、數據存儲、圖像處理、結果顯示和電源管理。視頻採集部分採用模擬PAL制攝像頭,配合高精度視頻A/D轉換器得到數字圖像。基於DSP的視頻採集要求對視頻信號具備採集,實時顯示、對圖像的處理和分析能力。視頻A/D采樣電路—SAA7115與視頻埠0或1相連,實現視頻的實時採集功能。視頻D/A電路—SAA7105與視頻口2相連,視頻輸出信號支持RGB、HD合成視頻、PAL/NTSC復合視頻和S端子視頻信號。通過I2C匯流排對SAA7105的內部寄存器編程實現不同輸出。
整個系統過程由三個部分組成:圖像採集—邊緣處理—輸出顯示,如圖2所示。攝像頭採集的視頻信號經視頻編碼器SAA7115數字化,DM642通過I2C匯流排對SAA7115進行參數配置。在SAA7115內部進行一系列的處理和變換後形成的數字視頻數據流,輸入到核心處理單元DM642。經過DSP處理後的數字視頻再經過SAA7105視頻編碼器進行D/A轉換後在顯示器上顯示最終處理結果。
3.2 圖像處理的軟體設計和演算法優化的實現
由於在改進Sobel邊緣檢測運算元性能的同時,也相對增加了計算量,尤其是方向模板的增加,每個像素點均由原來的2次卷積運算增加為8次卷積運算,其實時性大大減弱。為了改進上述的不足,在深入研究處理系統和演算法後,針對TMS320DM642的硬體結構特點,研究適合在TMS320DM642中高效運行的Sobel改進演算法,滿足實時處理的要求。整個程序的編寫和調試按照C6000軟體開發流程進行,流程分為:產生C代碼、優化C代碼和編寫線性匯編程序3個階段。使用的工具是TI的集成開發環境CCS。在CCS下,可對軟體進行編輯、編譯、調試、代碼性能測試等工作。在使用C6000編譯器開發和優化C代碼時[7-8],對C代碼中低效率和需要反復調用的函數需用線性匯編重新編寫,再用匯編優化器優化。整個系統的控制以及數字圖像處理是用C程序實現,大部分軟體設計採用C程序實現,這無疑提高了程序的可讀性和可移植性,而匯編程序主要是實現DM642的各部分初始化。其邊緣檢測優化演算法在DM642中的實現步驟具體如下:
S1:根據DM642的硬體結構要求和控制寄存器設置,初始化系統並編寫實現邊緣檢測演算法的C程序。
S2:藉助CCS開發環境的優化工具如Profiler等產生.OUT文件。
S3:根據產生的附件文件如.MAP文件,分析優化結果及源程序結構,進一步改進源程序和優化方法。
S4:使用CCS中調試、鏈接、運行等工具,再生成.OUT可執行文件。
S5:運行程序,如果滿足要求則停止;否則重復步驟S2~S4直至滿足使用要求。
4 實驗結果
本文以Lena圖像為例根據上述的硬體環境和演算法實現的原理和方法,圖4~圖6分別給出了在該系統下採集的視頻Lena圖像及使用邊緣檢測運算元和改進後處理的結果。由實驗結果可以看出,在該系統下能實時完成視頻圖像的處理,並且給出的邊緣檢測運算元能較好的消除雜訊的影響,邊緣輪廓清晰。該演算法不僅能抑制圖像中大部分雜訊和虛假邊緣,還保證了較高的邊緣點位精度。

圖4 Lena原始圖像 圖5 傳統Sobel運算元 圖6 改進Sobel運算元

5 總結
本文實現了在TMS320DM642評估板上用改進的Sobel運算元對實時圖像進行邊緣檢測,無延遲地得到邊緣圖像。邊緣檢測效果較好,既提高了圖像檢測的精度又滿足了實時性的要求。從檢測結果看,利用該改進後的運算元在邊緣精確定位、邊緣提取都達到了很好的效果,且抗雜訊能力強,並為目標跟蹤、無接觸式檢測、自動駕駛、視頻監控等領域的應用提供了堅實的基礎。
參考文獻
[1] 王磊等. 基於Sobel理論的邊緣提取改善方法[J].中國圖像圖形學報,2005.10
[2] 陳宏席. 基於保持平滑濾波的Sobel運算元邊緣檢測.蘭州交通大學學報,2006,25(1):86—90
[3] 熊偉. 基於TMS320DM642的多路視頻採集處理板卡硬體設計與實現[ M]. 國外電子元器件,2006
[4] 朱立.一種具有抗雜訊干擾的圖像邊緣提取演算法的研究[J].電子技術應用.2004,25(1)
[5] 劉松濤,周曉東.基於TMS320C6201的實時圖像處理系統[J].計算機工程,2005(7):17—23
[6] TI TMS320DM642 video/imaging fixed-point digital signal processor data manual,2003
[7] TMS320C6x Optimizing C Compiler User』s Guide』 TEXAS INSTRUMENTS」,2002
[8] TMS320C32x Optimizing C/C++ Compiler User's Guide,Texas Instruments Incorporated,2001

❹ 求一篇:圖像識別的主要方法及其特點的比較的開題報告。速度!!十萬火急,就這么多分!!

利用計算機進行遙感信息的自動提取則必須使用數字圖像,由於地物在同一波段、同一地物在不同波段都具有不同的波譜特徵,通過對某種地物在各波段的波譜曲線進行分析,根據其特點進行相應的增強處理後,可以在遙感影像上識別並提取同類目標物。早期的自動分類和圖像分割主要是基於光譜特徵,後來發展為結合光譜特徵、紋理特徵、形狀特徵、空間關系特徵等綜合因素的計算機信息提取。
常用的信息提取方法是遙感影像計算機自動分類。首先,對遙感影像室內預判讀,然後進行野外調查,旨在建立各種類型的地物與影像特徵之間的對應關系並對室內預判結果進行驗證。工作轉入室內後,選擇訓練樣本並對其進行統計分析,用適當的分類器對遙感數據分類,對分類結果進行後處理,最後進行精度評價。遙感影像的分類一般是基於地物光譜特徵、地物形狀特徵、空間關系特徵等方面特徵,目前大多數研究還是基於地物光譜特徵。
在計算機分類之前,往往要做些預處理,如校正、增強、濾波等,以突出目標物特徵或消除同一類型目標的不同部位因照射條件不同、地形變化、掃描觀測角的不同而造成的亮度差異等。
利用遙感圖像進行分類,就是對單個像元或比較勻質的像元組給出對應其特徵的名稱,其原理是利用圖像識別技術實現對遙感圖像的自動分類。計算機用以識別和分類的主要標志是物體的光譜特性,圖像上的其它信息如大小、形狀、紋理等標志尚未充分利用。
計算機圖像分類方法,常見的有兩種,即監督分類和非監督分類。監督分類,首先要從欲分類的圖像區域中選定一些訓練樣區,在這樣訓練區中地物的類別是已知的,用它建立分類標准,然後計算機將按同樣的標准對整個圖像進行識別和分類。它是一種由已知樣本,外推未知區域類別的方法;非監督分類是一種無先驗(已知)類別標準的分類方法。對於待研究的對象和區域,沒有已知類別或訓練樣本作標准,而是利用圖像數據本身能在特徵測量空間中聚集成群的特點,先形成各個數據集,然後再核對這些數據集所代表的物體類別。
與監督分類相比,非監督分類具有下列優點:不需要對被研究的地區有事先的了解,對分類的結果與精度要求相同的條件下,在時間和成本上較為節省,但實際上,非監督分類不如監督分類的精度高,所以監督分類使用的更為廣泛。
細小地物在影像上有規律地重復出現,它反映了色調變化的頻率,紋理形式很多,包括點、斑、格、壠、柵。在這些形式的基礎上根據粗細、疏密、寬窄、長短、直斜和隱顯等條件還可再細分為更多的類型。每種類型的地物在影像上都有本身的紋理圖案,因此,可以從影像的這一特徵識別地物。紋理反映的是亮度(灰度)的空間變化情況,有三個主要標志:某種局部的序列性在比該序列更大的區域內不斷重復;序列由基本部分非隨機排列組成;各部分大致都是均勻的統一體,在紋理區域內的任何地方都有大致相同的結構尺寸。這個序列的基本部分通常稱為紋理基元。因此可以認為紋理是由基元按某種確定性的規律或統計性的規律排列組成的,前者稱為確定性紋理(如人工紋理),後者呈隨機性紋理(或自然紋理)。對紋理的描述可通過紋理的粗細度、平滑性、顆粒性、隨機性、方向性、直線性、周期性、重復性等這些定性或定量的概念特徵來表徵。
相應的眾多紋理特徵提取演算法也可歸納為兩大類,即結構法和統計法。結構法把紋理視為由基本紋理元按特定的排列規則構成的周期性重復模式,因此常採用基於傳統的Fourier頻譜分析方法以確定紋理元及其排列規律。此外結構元統計法和文法紋理分析也是常用的提取方法。結構法在提取自然景觀中不規則紋理時就遇到困難,這些紋理很難通過紋理元的重復出現來表示,而且紋理元的抽取和排列規則的表達本身就是一個極其困難的問題。在遙感影像中紋理絕大部分屬隨機性,服從統計分布,一般採用統計法紋理分析。目前用得比較多的方法包括:共生矩陣法、分形維方法、馬爾可夫隨機場方法等。共生矩陣是一比較傳統的紋理描述方法,它可從多個側面描述影像紋理特徵。
圖像分割就是指把圖像分成各具特性的區域並提取出感興趣目標的技術和過程,此處特性可以是像素的灰度、顏色、紋理等預先定義的目標可以對應單個區域,也可以對應多個區域。
圖像分割是由圖像處理到圖像分析的關鍵步驟,在圖像工程中占據重要的位置。一方面,它是目標表達的基礎,對特徵測量有重要的影響;另一方面,因為圖像分割及其基於分割的目標表達、特徵抽取和參數測量的將原始圖像轉化為更抽象更緊湊的形式,使得更高層的圖像分析和理解成為可能。
圖像分割是圖像理解的基礎,而在理論上圖像分割又依賴圖像理解,彼此是緊密關聯的。圖像分割在一般意義下是十分困難的問題,目前的圖像分割一般作為圖像的前期處理階段,是針對分割對象的技術,是與問題相關的,如最常用到的利用閾值化處理進行的圖像分割。
圖像分割有三種不同的途徑,其一是將各象素劃歸到相應物體或區域的象素聚類方法即區域法,其二是通過直接確定區域間的邊界來實現分割的邊界方法,其三是首先檢測邊緣象素再將邊緣象素連接起來構成邊界形成分割。
閾值是在分割時作為區分物體與背景象素的門限,大於或等於閾值的象素屬於物體,而其它屬於背景。這種方法對於在物體與背景之間存在明顯差別(對比)的景物分割十分有效。實際上,在任何實際應用的圖像處理系統中,都要用到閾值化技術。為了有效地分割物體與背景,人們發展了各種各樣的閾值處理技術,包括全局閾值、自適應閾值、最佳閾值等等。
當物體與背景有明顯對比度時,物體的邊界處於圖像梯度最高的點上,通過跟蹤圖像中具有最高梯度的點的方式獲得物體的邊界,可以實現圖像分割。這種方法容易受到雜訊的影響而偏離物體邊界,通常需要在跟蹤前對梯度圖像進行平滑等處理,再採用邊界搜索跟蹤演算法來實現。
為了獲得圖像的邊緣人們提出了多種邊緣檢測方法,如Sobel, Canny edge, LoG。在邊緣圖像的基礎上,需要通過平滑、形態學等處理去除雜訊點、毛刺、空洞等不需要的部分,再通過細化、邊緣連接和跟蹤等方法獲得物體的輪廓邊界。
對於圖像中某些符合參數模型的主導特徵,如直線、圓、橢圓等,可以通過對其參數進行聚類的方法,抽取相應的特徵。
區域增長方法是根據同一物體區域內象素的相似性質來聚集象素點的方法,從初始區域(如小鄰域或甚至於每個象素)開始,將相鄰的具有同樣性質的象素或其它區域歸並到目前的區域中從而逐步增長區域,直至沒有可以歸並的點或其它小區域為止。區域內象素的相似性度量可以包括平均灰度值、紋理、顏色等信息。
區域增長方法是一種比較普遍的方法,在沒有先驗知識可以利用時,可以取得最佳的性能,可以用來分割比較復雜的圖像,如自然景物。但是,區域增長方法是一種迭代的方法,空間和時間開銷都比較大。
基於像素級別的信息提取以單個像素為單位,過於著眼於局部而忽略了附近整片圖斑的幾何結構情況,從而嚴重製約了信息提取的精度,而面向對象的遙感信息提取,綜合考慮了光譜統計特徵、形狀、大小、紋理、相鄰關系等一系列因素,因而具有更高精度的分類結果。面向對象的遙感影像分析技術進行影像的分類和信息提取的方法如下:
首先對圖像數據進行影像分割,從二維化了的圖像信息陣列中恢復出圖像所反映的景觀場景中的目標地物的空間形狀及組合方式。影像的最小單元不再是單個的像素,而是一個個對象,後續的影像分析和處理也都基於對象進行。
然後採用決策支持的模糊分類演算法,並不簡單地將每個對象簡單地分到某一類,而是給出每個對象隸屬於某一類的概率,便於用戶根據實際情況進行調整,同時,也可以按照最大概率產生確定分類結果。在建立專家決策支持系統時,建立不同尺度的分類層次,在每一層次上分別定義對象的光譜特徵、形狀特徵、紋理特徵和相鄰關系特徵。其中,光譜特徵包括均值、方差、灰度比值;形狀特徵包括面積、長度、寬度、邊界長度、長寬比、形狀因子、密度、主方向、對稱性,位置,對於線狀地物包括線長、線寬、線長寬比、曲率、曲率與長度之比等,對於面狀地物包括面積、周長、緊湊度、多邊形邊數、各邊長度的方差、各邊的平均長度、最長邊的長度;紋理特徵包括對象方差、面積、密度、對稱性、主方向的均值和方差等。通過定義多種特徵並指定不同權重,建立分類標准,然後對影像分類。分類時先在大尺度上分出"父類",再根據實際需要對感興趣的地物在小尺度上定義特徵,分出"子類"。

❺ 圖像識別演算法研究(用matlab實現的)(關於車牌識別的)至少兩種以上的演算法(要盡量詳細點的)

如果是單純的車牌識別演算法的話 建議matlab中文論壇有3份
1、貴州版本
2、廣西版本
3、老衲版本 (已經發了,其他的你去論壇下載吧

❻ 數字圖像處理邊緣檢測的研究 開題報告好難···

「數字圖像處理」的魅力在於同樣的課題,在不同的應用領域,差異性非常大。
如何你不是數學家,具有理論研究天賦,那麼你就緊緊盯住「邊緣檢測」在某個/某類應用領域中出現的問題。現實意義大,且有許多參考借鑒。

❼ 醫學影像中人體器官邊緣檢測開題報告

醫學影像中人體器官邊緣檢測開題報告。你很專業,我不會關心出去玩也是來回答你吧。