『壹』 小學數學論文的格式怎麼寫
方法之一,踩著名家的肩膀,從名家的著作中找靈感,找智慧的語言,然後以此思考自己的教學,就可以寫成文章。
方法之二,依台灣王鼎鈞創造的方法去寫。先在紙上寫個大大的「我」字,然後思考自己在教育教學上做了什麼,沒做什麼,做得怎麼樣,還想怎麼做……就一定會寫了。堅持十年,其實只要堅持三年,每天寫上一點,好文章一定會層出不窮。
方法之三,是開公司,借鑒凡爾納的思維。多多摘抄好東西,抄過幾萬條,就會自動生成很多文章、書籍。
方法之四,自費去聽一些名家的課、講座。因為自費去的,肯定就會生成一些文章。公費去的也能寫,但公費去的寫文章的量不如自費的多。
方法之五,語文教師不妨學學陳省身,學學吳文俊。以欠債還債的思維去做事。讀書是欠債,寫作是還債。有了這種思維,一定能寫出很多文章與書來。
方法之六,以寫書思維去經營文章。把書寫好了,文章就更棒了!所有的教師都會寫書,但因為沒有寫書的思維,所以文章寫起來就難了。一周寫一篇,一年就是50多篇,合起來就是一本書。讀自己的書,再看自己的文章,就會越變越好。
方法之七,一定要愛上豆腐塊。我以前寫過好多豆腐塊的小文章,被身邊人笑話過。但我不怕笑話。這些豆腐塊後來都成為了好東西。豆腐塊是小思考,聚起來就是大思考。
方法之八,敢於寫質疑文章。看出別人的問題,大膽去寫。保持一顆尊重人的心,不去惡毒攻擊人就行。質疑的文章往往更有力量,更有創造性。活在創造里,那是非常好有意思的。
方法之九,以理科、宗教等學科學寫語文教育教學文章。我覺得每年多看點理科的東西,宗教的東西,那裡創造性的東西非常好多,可以找到很多好玩的世界,這樣自己的文章就會好玩,有可讀性。
方法之十,堅持做自己的課題。堅持一輩子做自己的課題。有了課題,有了項目,文章會一篇接一篇的。
『貳』 求1500字初中數學小論文
數學小論文一
關於「0」
0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」
「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。
「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……
愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。
『叄』 小學數學論文範文1200字左右
數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
數學主要的學科首要產生於商業上計算的需要、了解數字間的關系、測量土地及預測天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的子領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習
數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的自然數及整數的算術運算。整數更深的性質被研究於數論中,此一理論包括了如費馬最後定理之著名的結果。 當數系更進一步發展時,整數被承認為有理數的子集,而有理數則包含於實數中,連續的數量即是以實數來表示的。實數則可以被進一步廣義化成復數。數的進一步廣義化可以持續至包含四元數及八元數。自然數的考慮亦可導致超限數,它公式化了計數至無限的這一概念。另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:阿列夫數,它允許無限集合之間的大小可以做有意義的比較。
數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關連性。
『肆』 小學生論文怎麼寫 1500字 不會擬標題,好心人幫忙擬一下
論文格式1、畢業論文格式的寫作順序是:標題、作者班級、作者姓名、指導教師姓名、中文摘要及關鍵詞、英文摘要及英文關鍵詞、正文、參考文獻。 2、畢業論文中附表的表頭應寫在表的上面,居中;論文附圖的圖題應寫在圖的下面,居中。按表、圖、公式在論文中出現的先後順序分別編號。 3、畢業論文中參考文獻的書寫格式嚴格按以下順序:序號、作者姓名、書名(或文章名)、出版社(或期刊名)、出版或發表時間。 4、論文格式的字體:各類標題(包括「參考文獻」標題)用粗宋體;作者姓名、指導教師姓名、摘要、關鍵詞、圖表名、參考文獻內容用楷體;正文、圖表、頁眉、頁腳中的文字用宋體;英文用Times New Roman字體。 5、論文格式的字型大小:論文題目用三號字體,居中;一級標題用四號字體;二級標題、三級標題用小四號字體;頁眉、頁腳用小五號字體;其它用五號字體;圖、表名居中。 6、格式正文列印頁碼,下面居中。 7、論文列印紙張規格:A4 210×297毫米。 8、在文件選項下的頁面設置選項中,「字元數/行數」選使用默認字元數;頁邊距設為 上:3厘米;下:2.5厘米;左:2.8厘米;右:2.8厘米;裝訂線:0.8厘米;裝訂線位置:左側;頁眉:1.8厘米;頁腳1.8厘米。 9、在格式選項下的段落設置選項中,「縮進」選0厘米,「間距」選0磅,「行距」選1.5倍,「特殊格式」選(無),「調整右縮進」選項為空,「根據頁面設置確定行高格線」選項為空。 10、頁眉用小五號字體列印「湖北工業大學管理學院2002級XX專業學年論文」字樣,並左對齊。
『伍』 小學數學小論文範文
0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」
「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。
「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……
愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。
『陸』 小學數學論文的格式是什麼。
第一行正中論文題目,第二行論文摘要,換行關鍵詞,換行論文內容,換行參考文獻
『柒』 小學生數學論文的寫作格式
小學要寫論文嗎?例: 談小學數學課堂中的提問藝術(題目在中間)
XX省XX市XX小學 XXX(作者)
(空2格)正文
『捌』 數學小論文1500字
魅力無比的定理證明
——勾股定理的證明
勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若騖,其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。
在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。
首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。
1.中國方法
畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。
左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是
a2+b2=c2。
這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。
2.希臘方法
直接在直角三角形三邊上畫正方形,如圖。
容易看出,
△ABA』 ≌△AA』』 C。
過C向A』』B』』引垂線,交AB於C』,交A』』B』』於C』』。
△ABA』與正方形ACDA』同底等高,前者面積為後者面積的一半,△AA』』C與矩形AA』』C』』C』同底等高,前者的面積也是後者的一半。由△ABA』≌△AA』』C,知正方形ACDA』的面積等於矩形AA』』C』』C』的面積。同理可得正方形BB』EC的面積等於矩形B』』BC』C』』的面積。
於是,
S正方形AA』』B』』B=S正方形ACDA』+S正方形BB』EC,
即 a2+b2=c2。
至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這里只用到簡單的面積關系,不涉及三角形和矩形的面積公式。
這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。
以上兩個證明方法之所以精彩,是它們所用到的定理少,都只用到面積的兩個基本觀念:
⑴ 全等形的面積相等;
⑵ 一個圖形分割成幾部分,各部分面積之和等於原圖形的面積。
這是完全可以接受的樸素觀念,任何人都能理解。
我國歷代數學家關於勾股定理的論證方法有多種,為勾股定理作的圖注也不少,其中較早的是趙爽(即趙君卿)在他附於《周髀算經》之中的論文《勾股圓方圖注》中的證明。採用的是割補法:
如圖,將圖中的四個直角三角形塗上硃色,把中間小正方形塗上黃色,叫做中黃實,以弦為邊的正方形稱為弦實,然後經過拼補搭配,「令出入相補,各從其類」,他肯定了勾股弦三者的關系是符合勾股定理的。即「勾股各自乘,並之為弦實,開方除之,即弦也」。
趙爽對勾股定理的證明,顯示了我國數學家高超的證題思想,較為簡明、直觀。
西方也有很多學者研究了勾股定理,給出了很多證明方法,其中有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為「百牛定理」。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。
下面介紹的是美國第二十任總統伽菲爾德對勾股定理的證明。
如圖,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比較以上二式,便得
a2+b2=c2。
這一證明由於用了梯形面積公式和三角形面積公式,從而使證明相當簡潔。
1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證明。5年後,伽菲爾德就任美國第二十任總統。後來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為勾股定理的「總統」證法,這在數學史上被傳為佳話。
在學習了相似三角形以後,我們知道在直角三角形中,斜邊上的高把這個直角三角形所分成的兩個直角三角形與原三角形相似。
如圖,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足為D。則
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我們發現,把①、②兩式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,這就是
a2+b2=c2。
這也是一種證明勾股定理的方法,而且也很簡潔。它利用了相似三角形的知識。
在對勾股定理為數眾多的證明中,人們也會犯一些錯誤。如有人給出了如下證明勾股定理的方法:
設△ABC中,∠C=90°,由餘弦定理
c2=a2+b2-2abcosC,
因為∠C=90°,所以cosC=0。所以
a2+b2=c2。
這一證法,看來正確,而且簡單,實際上卻犯了循環證論的錯誤。原因是餘弦定理的證明來自勾股定理。
人們對勾股定理感興趣的原因還在於它可以作推廣。
歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:「直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和」。
從上面這一定理可以推出下面的定理:「以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和」。
勾股定理還可以推廣到空間:以直角三角形的三邊為對應棱作相似多面體,則斜邊上的多面體的表面積等於直角邊上兩個多面體表面積之和。
若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等於兩直角邊上所作二球表面積之和。
如此等等。
【附錄】
一、【《周髀算經》簡介】
《周髀算經》算經十書之一。約成書於公元前二世紀,原名《周髀》,它是我國最古老的天文學著作,主要闡明當時的蓋天說和四分歷法。唐初規定它為國子監明算科的教材之一,故改名《周髀算經》。《周髀算經》在數學上的主要成就是介紹了勾股定理及其在測量上的應用。原書沒有對勾股定理進行證明,其證明是三國時東吳人趙爽在《周髀注》一書的《勾股圓方圖注》中給出的。
《周髀算經》使用了相當繁復的分數演算法和開平方法。
二、【伽菲爾德證明勾股定理的故事】
1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當時美國俄亥俄州共和黨議員伽菲爾德。他走著走著,突然發現附近的一個小石凳上,有兩個小孩正在聚精會神地談論著什麼,時而大聲爭論,時而小聲探討。由於好奇心驅使,伽菲爾德循聲向兩個小孩走去,想搞清楚兩個小孩到底在干什麼。只見一個小男孩正俯著身子用樹枝在地上畫著一個直角三角形。於是伽菲爾德便問他們在干什麼?那個小男孩頭也不抬地說:「請問先生,如果直角三角形的兩條直角邊分別為3和4,那麼斜邊長為多少呢?」伽菲爾德答道:「是5呀。」小男孩又問道:「如果兩條直角邊長分別為5和7,那麼這個直角三角形的斜邊長又是多少?」伽菲爾德不假思索地回答道:「那斜邊的平方一定等於5的平方加上7的平方。」小男孩又說:「先生,你能說出其中的道理嗎?」伽菲爾德一時語塞,無法解釋了,心裡很不是滋味。
於是,伽菲爾德不再散步,立即回家,潛心探討小男孩給他出的難題。他經過反復思考與演算,終於弄清了其中的道理,並給出了簡潔的證明方法。
轉引自:http://tw.ntu.e.cn/ecation/yanjiu/中「數學的發現」欄目。圖無法轉貼,請查看原文。
魅力無比的定理證明
——勾股定理的證明
勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若騖,其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。
在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。
首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。
1.中國方法
畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。
左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是
a2+b2=c2。
這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。
2.希臘方法
直接在直角三角形三邊上畫正方形,如圖。
容易看出,
△ABA』 ≌△AA』』 C。
過C向A』』B』』引垂線,交AB於C』,交A』』B』』於C』』。
△ABA』與正方形ACDA』同底等高,前者面積為後者面積的一半,△AA』』C與矩形AA』』C』』C』同底等高,前者的面積也是後者的一半。由△ABA』≌△AA』』C,知正方形ACDA』的面積等於矩形AA』』C』』C』的面積。同理可得正方形BB』EC的面積等於矩形B』』BC』C』』的面積。
於是,
S正方形AA』』B』』B=S正方形ACDA』+S正方形BB』EC,
即 a2+b2=c2。
至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這里只用到簡單的面積關系,不涉及三角形和矩形的面積公式。
這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。
以上兩個證明方法之所以精彩,是它們所用到的定理少,都只用到面積的兩個基本觀念:
⑴ 全等形的面積相等;
⑵ 一個圖形分割成幾部分,各部分面積之和等於原圖形的面積。
這是完全可以接受的樸素觀念,任何人都能理解。
我國歷代數學家關於勾股定理的論證方法有多種,為勾股定理作的圖注也不少,其中較早的是趙爽(即趙君卿)在他附於《周髀算經》之中的論文《勾股圓方圖注》中的證明。採用的是割補法:
如圖,將圖中的四個直角三角形塗上硃色,把中間小正方形塗上黃色,叫做中黃實,以弦為邊的正方形稱為弦實,然後經過拼補搭配,「令出入相補,各從其類」,他肯定了勾股弦三者的關系是符合勾股定理的。即「勾股各自乘,並之為弦實,開方除之,即弦也」。
趙爽對勾股定理的證明,顯示了我國數學家高超的證題思想,較為簡明、直觀。
西方也有很多學者研究了勾股定理,給出了很多證明方法,其中有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為「百牛定理」。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。
下面介紹的是美國第二十任總統伽菲爾德對勾股定理的證明。
如圖,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比較以上二式,便得
a2+b2=c2。
這一證明由於用了梯形面積公式和三角形面積公式,從而使證明相當簡潔。
1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證明。5年後,伽菲爾德就任美國第二十任總統。後來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為勾股定理的「總統」證法,這在數學史上被傳為佳話。
在學習了相似三角形以後,我們知道在直角三角形中,斜邊上的高把這個直角三角形所分成的兩個直角三角形與原三角形相似。
如圖,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足為D。則
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我們發現,把①、②兩式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,這就是
a2+b2=c2。
這也是一種證明勾股定理的方法,而且也很簡潔。它利用了相似三角形的知識。
在對勾股定理為數眾多的證明中,人們也會犯一些錯誤。如有人給出了如下證明勾股定理的方法:
設△ABC中,∠C=90°,由餘弦定理
c2=a2+b2-2abcosC,
因為∠C=90°,所以cosC=0。所以
a2+b2=c2。
這一證法,看來正確,而且簡單,實際上卻犯了循環證論的錯誤。原因是餘弦定理的證明來自勾股定理。
人們對勾股定理感興趣的原因還在於它可以作推廣。
歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:「直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和」。
從上面這一定理可以推出下面的定理:「以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和」。
勾股定理還可以推廣到空間:以直角三角形的三邊為對應棱作相似多面體,則斜邊上的多面體的表面積等於直角邊上兩個多面體表面積之和。
若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等於兩直角邊上所作二球表面積之和。
如此等等。