A. 橋梁工程的實習報告怎麼寫
為了很好的運用書本的知識和更早地對本專業的認識,為此,學院為了讓我們對本專業有更好的認識,在我們大四開學伊始,組織了一次外出實習,好讓大家可以將平時在課堂上學到的東西聯繫到實際生產中去。讓我們了解到橋梁工程的學習,不僅要注意知識的積累,更應該注意能力的培養。 在8月23號,學院召開動員大會,指導老師為大家概要地介紹了一些道路與橋梁的基本常識,簡要的說明未來一個星期實習的地點和任務。除了要求同學們要多聽多問多看多記外,更特別地強調了安全問題。實習前2天我因為有事沒能和大家一起去杭州,錯過了看高鐵、曹娥江大橋、水泥拌合現場、中隧橋波形鋼腹板、嘉紹跨江大橋等等一些內容,只能藉助同學在現場所拍照片和網上查閱的相關資料了解一些知識,略有遺憾。
實習時間:8月24號~9月1號
實習地點:
8.24 高鐵 曹娥江大橋
8.25 中隧橋波形鋼腹板 嘉紹跨江大橋 九堡大橋
8.26 泰州長江大橋 懸索橋施工場地
8.27 江六高速公路
8.30 潤揚大橋(展覽室+監控室) 丹陽九曲河特大橋
8.31 路橋華南馬鞍山長江大橋MQ-10標
9.1 京滬高速鐵路南京大勝關長江大橋
實習任務:
到各個實習地點認真觀察、學習、了解各個施工流程、工藝、技術等方面內容,專心聽施工人員以及老師的講解,思考研究,記錄各個要點和實習體會,整理成實習報告。
實習內容:
一、 高鐵橋梁
實習的第一天和最後一天都參觀了高鐵的施工。鐵路橋梁,尤其是高速鐵路橋梁設計建設技術的發展極為迅速。 20世紀90年代以來,中國鐵路橋梁進入發展上升期,21世紀迎來了橋梁發展的飛躍。中國鐵路橋梁,特別是高速鐵路橋梁結構有很大突破。國外沒有我們這樣復雜的地質條件,沒有我們在這么高速度建設條件下的大跨度橋梁,沒有我們這么高的橋梁比重。前些年,還感覺高速公路橋發展快於鐵路,而近年來中國高速鐵路橋梁的發展突飛猛進,讓世界刮目相看。現在,我國高速鐵路橋梁的設計建設技術都可以說達到了世界先進水平。由於高速鐵路的運營密度及對舒適性、安全性的要求均高於普通線路,因此高速列車對橋梁結構的動力作用也就更大。在這個前提下,高速鐵路橋梁在設計、施工中形成了自己的特色。
高鐵橋梁比例大,高架長橋多。高速鐵路設計參數限制嚴格,曲線半徑大、坡度小,並需要全封閉行車,因而橋梁建築物大大多於普通鐵路,高架長橋的數量也很多。由於高速鐵路對線路、橋梁、隧道等土建工程的剛度要求嚴格,因此,高速鐵路橋梁跨度以中小跨度為主。高速鐵路橋梁必須具有足夠大的剛度和良好的整體性,以防止橋梁出現較大撓度和振幅。同時,必須限制橋梁的預應力徐變上拱和不均勻溫差引起的結構變形,以保證軌道的高平順行。一般來說,高速鐵路橋梁設計主要由剛度控制,強度基本上不控制其設計。高速鐵路要求依次鋪設跨區間無縫線路,而橋上無縫線路鋼軌的受力狀態不同於路基,結構的溫度變化、列車制動、橋梁撓曲會使橋梁在縱向產生一定位移,引起橋上鋼軌產生附加應力。過大的附加應力會造成橋上無縫線路失穩,影響行車安全。因此,墩台基礎要有足夠的縱向剛度,以盡量減少鋼軌附加應力和梁軌間的相對位移。高速鐵路的中斷行車會造成很大的經濟損失和社會影響,因此高速鐵路橋梁一方面要盡量減少維修,另一方面要便於日常檢查和維修。
二、 中隧橋波形鋼腹板
8月25號參觀了中隧橋波形鋼腹板集團,讓我們對波形鋼腹板這種新興技術產品有了更多的了解。
波形鋼腹板箱梁是一種新型的鋼與混凝土組合結構,它充分利用了鋼與混凝土的優點,提高了結構的穩定性、強度及材料的使用效率。
應力混凝土簡支箱梁橋是橋梁工程中應用最多的橋型,但隨著跨度的増大其本身自重成倍增多,再設計成簡支結構已不經濟,為減輕自重各國嘗試採取多種形式,其中有效方法之一是採用波紋鋼腹板,即將自重大的預應力混凝土簡支箱梁中的腹板用波紋鋼板替代。據有關資料介紹,同等跨度波紋鋼腹板組合箱梁與一般的PC 梁相比重量減輕20 %以上,且可改善結構性能(提高預應力效率、大大提高腹板的抗剪強度) ,對收縮徐變和溫度變化的影響小。我國近年對這種結構的力學性能、工程設計和施工方法等方面的研究取得了重要的進展。
三、 大橋
由於實習前2天我有事並沒有隨班級一起去參觀曹娥江大橋、嘉紹跨江大橋和九堡大橋現場,只能通過同學那邊的一些資料和自己網上搜索得知一些知識匯集如下。
1、嘉紹跨江大橋
嘉紹跨江大橋,又稱嘉紹大橋,是繼杭州灣跨海大橋後,又一座橫跨杭州灣的大橋,加上今年一月開工的錢江隧道,錢江喇叭口呈現出「一灣三橋」的格局,終端均北指上海。
嘉紹跨江工程北起嘉興海寧,南接紹興上虞,由三部分組成:嘉興地界43公里的高速連接線,連接滬杭和乍嘉蘇高速公路交叉口處;在紹興地界有13公里的高速公路,與杭甬和上三高速公路交匯;中間跨江部分就是嘉紹大橋。與36公里長杭州灣跨海大橋相比,嘉紹大橋的跨江距離要短許多,大橋橋長只有10公里,僅杭州灣跨海大橋的1/3長度。但是橋面更為寬敞,從設計到最後規劃確定,橋面寬40.5米,由6車道改成了8車道,大橋設計速度為100公里/小時。
嘉紹大橋採用典型的斜拉橋設計,主橋由連續的5跨斜拉橋組成,每跨428米,懸索的橋塔,採用錢江三橋一樣的獨柱設計,只不過錢江三橋是兩面懸索,而嘉紹跨江大橋是四面懸索,造型更宏偉。據了解,這一技術、造型的橋,目前在國內還是首創。建成後,大橋主通航孔可達到通航3000噸級集裝箱船的需要。大橋主航道橋採用技術含量最高的6塔獨柱斜拉橋方案(目前國內外修建的多塔斜拉橋多為3塔),這使主橋長度達2680米,分出5個主通航道,索塔數量、主橋長度規模位居世界第一;大橋採用雙向八車道高速公路標准,主橋總寬度達55.6米(含布索區)。
2九堡大橋
九堡大橋,即錢江八橋,大橋全長1855米,設置雙向六車道,設計速度80公里/小時。2008年12月18日正式開工建設,預計2011年底竣工,項目總投資約9.7億。大橋北接江干,南連蕭山,跨越錢塘江,是杭州市「兩繞三縱五橫」城市快速路網中最東邊「一縱」的主要部分。一旦建成,將使杭州主城與臨平、下沙和蕭山三個副城聯為一體,從而極大地擴展杭州向錢塘江以東的空間。
3、曹娥江大橋
曹娥江大橋位於浙江省嵊州市市區官河路景觀大道,北接老城區,南連城南新區,該橋的建成對加強新老城區的聯系,促進新區的經濟繁榮具有重要的意義。橋梁正處於長樂江,澄潭江和曹娥江三江交匯處,主橋跨越曹娥江.曹娥江大橋主橋採用雙拱肋下承式鋼管混凝土系桿拱橋,引橋採用預應力混凝土連續箱梁結構。橋跨組合:3×22 m+3×26 m+2×136 m+3×26 m+3×22m=560 m,其中主橋長272 m,引橋長288 m。
主橋橋梁結構形式採用兩跨兩片拱肋的下承式鋼管混凝土系桿拱橋,單跨計算跨徑132 m,拱軸線形式為二次拋物線,矢跨比為1/5。拱肋中心距為17.5 m,設計按雙向四車道設計,拱肋之間設3道空間桁式風撐。橋粱結構主要由鋼管混凝土拱肋、預應力混凝土系梁、吊桿、吊桿橫梁,端橫梁及橋面系組成,外部為簡支靜定結構,內部屬高次超靜定結構。
主要技術標准:
(1)道路等級:城市主幹道。
(2)主橋橋幅寬度:2×4 m(人行道)+2×4m(非機動車道)+2×2.5 m(隔離帶)+15 m(機動車道)=36 m。
(3)設計荷載:城一A級,人群3.5 kN/m2。
(4)抗震等級:6度地區,按7度設防.
(5)橋梁豎曲線:主橋為平坡,引橋縱坡2.5%,主橋兩端均設凸曲線,半徑尺=1 500 m。
4、泰州長江大橋
線路走向:
泰州長江大橋工程項目起於泰州境內的寧通高速公路宣堡樞紐,在永安洲鎮跨入長江,向西於鎮江揚中小泡沙跨越夾江,經姚橋鎮進入常州境內,止於滬寧高速公路湯庄樞紐。
設計標准:
泰州長江大橋工程採用雙向六車道高速公路標准,橋梁設計荷載為公路-I級。主橋通航凈空高度不小於50米,凈寬不小於760米,能滿足5萬噸級巴拿馬散裝貨輪的通航需要。
工程規模:
泰州長江大橋項目概算總投資為93.7億元,建設工程為5.5年。由北接線跨江主橋、夾江橋和南接線四部分組成,全長62.088公里。其中誇獎主橋採用主跨為2×1080米的三塔兩跨懸索橋,繫世界第一,且為世界首創。
之所以採用三塔懸索橋橋型主要出於兩個方面的考慮:一是考慮到橋位處江面寬闊。據測量,大橋跨越的長江江面寬達2.3公里,河床呈淺W形斷面,如採用一跨過江的橋梁方案,投資將大幅度增加,而採用三塔兩跨懸索橋不僅節約了投資,而且能最大限度地利用橋址區河床特點,並能適應長江河勢的變化,同時由於水中只有一個主塔基礎,最大限度減少了建橋對水流的影響,降低了船舶撞險。二是考慮到長江岸線資源的充分利用問題。如果採用斜拉橋橋型,引橋過多、過密的橋墩,將會影響兩岸港口碼頭間船舶的航行,不利於兩岸岸線的開發利用。
技術創新點:
(1) 主橋為2×1080米特大跨徑三塔兩跨懸索橋,,繫世界第一,且為世界首創,其結構體系為世界橋梁技術前沿的突破性創新。
(2) 中塔採用世界上高度第一的縱向人字型、橫向門式框架型鋼塔,設計和 施工技術含量高。
(3) 中塔基礎採用世界上入土最深的水中沉井基礎。沉井平面尺寸為長58米,寬44米,高76米,整個沉井基礎下沉深度達到-70米,施工難度和施工風險極大。
(4) 上部結構主纜架設、鋼箱梁吊裝和施工控制等對傳統單跨懸索橋施工技術有突破性發展。
建設泰州長江公路大橋,是我省『五縱九橫五聯』高速公路網和國家《長江三角洲地區現代化公路交通規劃綱要》重要的過江通道工程,對完善國、省干線公路網,加強泰州、鎮江、常州的交流,促進長江兩岸區域經濟的均衡發展和沿江開發開放,改善長江航運條件具有積極的作用。
5、潤揚大橋
潤揚長江公路大橋是江蘇省「四縱四橫四聯」公路主骨架和跨長江通道的重要組成部分。工程全長35.66公里(南延伸段12公里),由北接線、北接線高架橋、北引橋、北汊斜拉橋、世業洲互通、南汊懸索橋、南引橋、南接線、南接線延伸段9個部分組成。南汊懸索橋主跨1490米,是目前中國第一、世界第三的特大跨徑懸索橋;北汊橋採用(176+406+176)米的三跨雙塔雙索麵鋼梁斜拉橋,全線採用雙向六車道(南延伸段四車道)高速公路標准,計算行車速度100公里/小時,南延伸段120公里/小時。大橋通航凈空懸索橋為50米,可通過5萬噸級貨輪,斜拉橋為18米。
大橋工程在鎮江境內全長21.749公里,占總長度的61%,其中主橋的鎮江境內里程3.841公里,佔主橋總長的74%。大橋工程在鎮江市境內設置五座互通立交,分別是世業洲互通、躍進路互通、312國道互通、丹徒上黨互通及與滬寧高速公路交叉的丹徒互通。
新技術應用與科技創新
1.凍結排樁工法。南錨碇基礎成功採用排樁凍結圍護方案進行基坑施工。排樁凍結法是一種全新的基坑施工工法,應用於橋梁基礎工程在國內屬於首次,尚未檢索到國外使用該工法進行敞開式、大面積、深基坑施工的實例。排樁凍結法將兩種成熟工法有機結合,解決了南錨碇基坑圍護結構的嵌岩問題,也解決了防滲封水的問題,施工可操作性強,風險可控,工程費用與其他施工方案相當,工期短。
2.微膨脹混凝土施工技術。北錨碇基礎底板混凝土方量達15800m