當前位置:首頁 » 論文題目 » 機械專業優秀的畢業設計開題報告
擴展閱讀
中國網路原創新人樂團 2021-03-31 20:26:56
黨政視頻素材 2021-03-31 20:25:44
廈門大學統計學碩士 2021-03-31 20:25:36

機械專業優秀的畢業設計開題報告

發布時間: 2021-03-17 21:29:35

Ⅰ 機械類畢業設計開題報告範文

你好啊,你的機械類開題報告選題定了沒?開題報告選題老師同意了嗎?准備往哪個方向寫?
開題報告學校具體格式准備好了沒?准備寫多少字還有什麼不懂不明白的可以問我,希望可以幫到你,祝開題報告選題順利通過,畢業論文寫作過程順利。

先說下開題報告的內容

1、課題的來源及選題的依據。主要是研究生對其研究方向的歷史,現狀和發展情況進行分析,著重說明所選課題的經過,該課題在國內外的研究動態,和對開展此課研究工作的設想,同時闡明所選課題的理論意義、實用價值和社會經濟效益,以及准備在哪些方面有所進展或突破。

2、對所確定的課題,在理論上和實際上的意義、價值及可能達到的水平,給予充分的闡述,同時要對自己的課題計劃、確定的技術路線、實驗方案、預期結果等做理論上和技術可行性的論證。

3、課題研究過程,擬採用哪些方法和手段,目前儀器設備和其他各方面條件是否具備。

4、闡述課題研究工作可能遇的困難和問題,以及解決的方法和措施。

5、估算論文工作所需經費,說明經費來源。

再談下開題報告的要求

1、開題時間:開題報告至遲應於第三學期末完成。凡未按時開題著,可酌情在論文成績中減1至5分。

2、研究生要進行系統的文獻查閱和廣泛的調查研究,寫出詳細的文獻綜述,並進行現場考察和初步的試驗研究,然後寫出5000字左右的書面開題報告,並制定出詳細的論文工作計劃,經導師審閱、修改後進行開題報告。開題前研究生應將有關的參考文獻和已做過的作為開題依據的各種理論分析、試驗數據,事先印發給參加會議的有關人員。

3、開題報告必須在學院或教研室(研究室)中進行,組成3至5人的開題報告審查小組,並邀請本專業的教師、學生參加,聽取多方面的意見。審查小組成員應事先審閱提交的開題報告及有關資料,為開會做好准備。

會議應發揚學術民主,對研究生的開題報告進行嚴格審核和科學論證。對選題適當、論據充分、措施落實的,應批准論文開題;對尚有不足的,要限期修改補充,並重做開題報告。若再次開題不能通過。則取消研究生學籍,終止培養。

4、開題通過後,應將開題報告與論文工作計劃經導師、教研室主任和學院院長簽字後交校學位辦公室。研究生、導師、學院各存一份開題報告和論文工作計劃的復印件,以便定期檢查論文工作。

5、開題通過後,一般不得改變研究課題。確有特殊情況需要更改課題者,由導師寫出書面報告說明理由,經教研室主任、學院院長、研究生教育學院院長批准後,方可另做開題報告,改換研究課題,更改研究課題後仍不能進行下去的,則對研究生取消學籍,並取消指導教師指導研究生的資格。

Ⅱ 機械製造專業畢業設計開題報告

參考 卻鎖不住愛和憂傷

Ⅲ 機械設計畢業設計開題報告

相關範文:

超硬材料薄膜塗層研究進展及應用

摘要:CVD和PVD TiN,TiC,TiCN,TiAlN等硬質薄膜塗層材料已經在工具、模具、裝飾等行業得到日益廣泛的應用,但仍然不能滿足許多難加工材料,如高硅鋁合金,各種有色金屬及其合金,工程塑料,非金屬材料,陶瓷,復合材料(特別是金屬基和陶瓷基復合材料)等加工要求。正是這種客觀需求導致了諸如金剛石膜、立方氮化硼(c-BN)和碳氮膜(CNx)以及納米復合膜等新型超硬薄膜材料的研究進展。本文對這些超硬材料薄膜的研究現狀及工業化應用前景進行了簡要的介紹和評述。
關鍵詞:超硬材料薄膜;研究進展;工業化應用
1 超硬薄膜

超硬薄膜是指維氏硬度在40GPa以上的硬質薄膜。不久以前還只有金剛石膜和立方氮化硼(c-BN)薄膜能夠達到這個標准,前者的硬度為50-100GPa(與晶體取向有關),後者的硬度為50~80GPa。類金剛石膜(DLC)的硬度范圍視制備方法和工藝不同可在10GPa~60GPa的寬廣范圍內變動。因此一些硬度很高的類金剛石膜(如採用真空磁過濾電弧離子鍍技術制備的類金剛石膜(也叫Ta:C))也可歸人超硬薄膜行列。近年來出現的碳氮膜(CNx)雖然沒有像Cohen等預測的晶態β-C3N4那樣超過金剛石的硬度,但已有的研究結果表明其硬度可達10GPa~50GPa,因此也歸人超硬薄膜一類。上述幾種超硬薄膜材料具有一個相同的特徵,他們的禁帶寬度都很大,都具有優秀的半導體性質,因此也叫做寬禁帶半導體薄膜。SiC和GaN薄膜也是優秀的寬禁帶半導體材料,但它們的硬度都低於40GPa,因此不屬於超硬薄膜。

最近出現的一類超硬薄膜材料與上述寬禁帶半導體薄膜完全不同,他們是由納米厚度的普通的硬質薄膜組成的多層膜材料。盡管每一層薄膜的硬度都沒有達到超硬的標准,但由它們組成的納米復合多層膜卻顯示了超硬的特性。此外,由納米晶粒復合的TiN/SiNx薄膜的硬度竟然高達105GPa,創紀錄地達到了金剛石的硬度。

本文將就上述幾種超硬薄膜材料一一進行簡略介紹,並對其工業化應用前景進行評述。

2 金剛石膜

2.1金剛石膜的性質
金剛石膜從20世紀80年代初開始,一直受到世界各國的廣泛重視,並曾於20世紀80年代中葉至90年代末形成了一個全球范圍的研究熱潮(Diamond fever)。這是因為金剛石除具有無與倫比的高硬度和高彈性模量之外,還具有極其優異的電學(電子學)、光學、熱學、聲學、電化學性能(見表1)和極佳的化學穩定性。大顆粒天然金剛石單晶(鑽石)在自然界中十分稀少,價格極其昂貴。而採用高溫高壓方法人工合成的工業金剛石大都是粒度較小的粉末狀的產品,只能用作磨料和工具(包括金剛石燒結體和聚晶金剛石(PCD)製品)。而採用化學氣相沉積(CVD)方法制備的金剛石膜則提供了利用金剛石所有優異物理化學性能的可能性。經過20餘年的努力,化學氣相沉積金剛石膜已經在幾乎所有的物理化學性質方面和最高質量的IIa型天然金剛石晶體(寶石級)相比美(見表1)。化學氣相沉積金剛石膜的研究已經進人工業化應用階段。

表 1 金剛石膜的性質
Table 1 Properties of chamond film

CVD 金剛石膜
天然金剛石

點陣常數 (Å)
3.567
3.567

密度 (g/cm3)
3.51
3.515

比熱 Cp(J/mol,(at 300K))
6.195
6.195

彈性模量 (GPa)
910-1250
1220*

硬度 (GPa)
50-100
57-100*

縱波聲速 (m/s)

18200

摩擦系數
0.05-0.15
0.05-0.15

熱膨脹系數 (×10 -6 ℃ -1)
2.0
1.1***

熱導率 (W/cm.k)
21
22*

禁帶寬度 (eV)
5.45
5.45

電阻率 (Ω.cm)
1012-1016
1016

飽和電子速度 (×107cms-1)
2.7
2.7*

載流子遷移率 (cm2/Vs)

電子
1350-1500
2200**

空隙
480
1600*

擊穿場強 (×105V/cm)

100

介電常數
5.6
5.5

光學吸收邊 (□ m)

0.22

折射率 (10.6 □ m)
2.34-2.42
2.42

光學透過范圍
從紫外直至遠紅外 ( 雷達波 )
從紫外直至遠紅外 ( 雷達波 )

微波介電損耗 (tan □)
< 0.0001

注:*在所有已知物質中占第一,**在所有物質中占第二,***與茵瓦(Invar)合金相當。

2.2金剛石膜的制備方法

化學氣相沉積金剛石所依據的化學反應基於碳氫化合物(如甲烷)的裂解,如:
熱高溫、等離子體
CH4(g)一C(diamond)+2H2(g) (1)

實際的沉積過程非常復雜,至今尚未完全明了。但金剛石膜沉積至少需要兩個必要的條件:(1)含碳氣源的活化;(2)在沉積氣氛中存在足夠數量的原子氫。除甲烷外,還可採用大量其它含碳物質作為沉積金剛石膜的前驅體,如脂肪族和芳香族碳氫化合物,乙醇,酮,以及固態聚合物(如聚乙烯、聚丙烯、聚苯乙烯),以及鹵素等等。

常用的沉積方法有四種:(1)熱絲CVD;(2)微波等離子體CVD;(3)直流電弧等離子體噴射(DC Arc Plasma Jet);(4)燃燒火焰沉積。在這幾種沉積方法中,改進的熱絲CVD(EACVD)設備和工藝比較簡單,穩定性較好,易於放大,比較適合於金剛石自支撐膜的工業化生產。但由於易受燈絲污染和氣體活化溫度較低的原因,不適合於極高質量金剛石膜(如光學級金剛石膜)的制備。微波等離子體CVD是一種無電極放電的等離子體增強化學氣相沉積工藝,等離子體與沉積腔體沒有接觸,放電非常穩定,因此特別適合於高質量金剛石薄膜(塗層)的制備。微波等離子體CVD的缺點是沉積速率較低,設備昂貴,制備成本較高。採用高功率微波等離子體CVD系統(目前國外設備最高功率為75千瓦,國內為5千瓦),也可實現金剛石膜大面積、高質量、高速沉積。但高功率設備價格極其昂貴(超過100萬美元),即使在國外願意出此天價購買這種設備的人也不多。直流電弧等離子體噴射(DC Arc P1asma Jet)是一種金剛石膜高速沉積方法。由於電弧等離子體能夠達到非常高的溫度(4000K-6000K)。因此可提供比其它任何沉積方法都要高的原子氫濃度,使其成為一種金剛石膜高質量高速沉積工藝。特殊設計的高功率JET可以實現大面積極高質量(光學級)金剛石自支撐膜的高速沉積。我國在863計劃"75」和"95」重大關鍵技術項目的支持下已經建立具有我國特色和獨立知識產權的高功率De Are Plasma Jet金剛石膜沉積系統,並於1997年底在大面積光學級金剛石膜的制備技術方面取得了突破性進展。目前已接近國外先進水平。

2.3金剛石膜研究現狀和工業化應用
20餘年來,CVD金剛石膜研究已經取得了非常大的進展。金剛石膜的內在質量已經全面達到最高質量的天然IIa型金剛石單晶的水平(見表1)。在金剛石膜工具應用和熱學應用(熱沉)方面已經實現了,產業化,一些新型的金剛石膜高技術企業已經在國內外開始出現。光學(主要是軍事光學)應用已經接近產業化應用水平。金剛石膜場發射和真空微電子器件、聲表面波器件(SAW)、抗輻射電子器件(如SOD器件)、一些基於金剛石膜的探側器和感測器和金剛石膜的電化學應用等已經接近實用化。由於大面積單晶異質外延一直沒有取得實質性進展,n一型摻雜也依然不夠理想,金剛石膜的高溫半導體器件的研發受到嚴重障礙。但是,近年來採用大尺寸高溫高壓合成金剛石單晶襯底的金剛石同質外延技術取得了顯著進展,已經達到了研製晶元級尺寸襯底的要求。金剛石高溫半導體晶元即將問世。

鑒於篇幅限制,及本文關於超硬薄膜介紹的宗旨,下面將僅對金剛石膜的工具(摩擦磨損)應用進行簡要介紹。

2.4金剛石膜工具和摩擦磨損應用
金剛石膜所具有的最高硬度、最高熱導率、極低摩擦系數、很高的機械強度和良好化學穩定性的異性能組合(見表1)使其成為最理想的工具和工具塗層材料。
金剛石膜工具可分為金剛石厚膜工具和金剛石薄膜塗層工具。

2.4.1金剛石厚膜工具
金剛石厚膜工具採用無襯底金剛石白支撐膜(厚度一般為0.5mm~2mm)作為原材料。目前已經上市的產品有:金剛石厚膜焊接工具、金剛石膜拉絲模芯、金剛石膜砂輪修整條、高精度金剛石膜軸承支架等等。

金剛石厚膜焊接工具的製作工藝為:金剛石自支撐膜沉積→激光切割→真空釺焊→高頻焊接→精整。金剛石厚膜釺焊工具的使用性能遠遠優於PCD,可用於各種難加工材料,包括高硅鋁合金和各種有色金屬及合金、復合材料、陶瓷、工程塑料、玻璃和其它非金屬材料等的高效、精密加工。採用金剛石厚膜工具車削加工的高硅鋁合金錶面光潔度可達V12以上,可代替昂貴的天然金剛石刀具進行「鏡面加工"。金剛石膜拉絲模芯可用於拉制各種有色金屬和不銹鋼絲,由於金剛石膜是准各向同性的,因此在拉絲時模孔的磨損基本上是均勻的,不像天然金剛石拉絲模芯那樣模孔的形狀會由於非均勻磨損(各向異性所致)而發生畸變。金剛石膜修整條則廣泛用於機械製造行業,用作精密磨削砂輪的修整,代替價格昂貴的天然金剛石修整條。這些產品已經在國內外市場上出現,但目前的規模還不大。其原因是:(1)還沒有為廣大用戶所熟悉、了解;(2)面臨其它產品(主要是PCD)的競爭;(3)雖然比天然金剛石產品便宜,但成本(包括金剛石自支撐膜的制備和加工成本)仍然較高,在和PCD競爭時的優勢受到一定的限制。

高熱導率(≥10W/em.K)金剛石自支撐膜可作為諸如高功率激光二極體陣列、高功率微波器件、MCMs(多晶元三維集成)技術的散熱片(熱沉)和功率半導體器件(Power ICs)的封裝。在國外已有一定市場規模。

在國內,南京天地集團公司和北京人工晶體研究所合作在1997年前後率先成立了北京天地金剛石公司,生產和銷售金剛石膜拉絲模芯、金剛石膜修整條和金剛石厚膜焊接工具及其它一些金剛石膜產品。該公司大約在2000年左右渡過了盈虧平衡點,但目前的規模仍然不很大。國內其它一些單位,如北京科技大學、河北省科學院(北京科技大學的合作者)、吉林大學、核工業部九院、浙江大學、湖南大學等都具有生產金剛石厚膜工具產品的能力,其中有些單位正在國內市場上小批量銷售其產品。

2.4.2金剛石薄膜塗層工具
金剛石薄膜塗層工具一般採用硬質合金工具作為襯底,金剛石膜塗層的厚度一般小於30lxm。金剛石薄膜塗層硬質合金工具的加工材料范圍和金剛石厚膜工具完全相同,在切削高硅鋁合金時一般均比未塗層硬質合金工具壽命提高lO~20倍左右。在切削復合材料等極難加工材料時壽命提高幅度更大。金剛石薄膜塗層工具的性能與PCD相當或略高於PCD,但制備成本比PCD低得多,且金剛石薄膜可以在幾乎任意形狀的工具襯底上沉積,PCD則只能製作簡單形狀的工具。金剛石薄膜塗層工具的另一大優點是可以大批量生產,因此成本很低,具有非常好的市場競爭能力。

金剛石薄膜塗層硬質合金工具研發的一大技術障礙是金剛石膜與硬質合金的結合力太差。這主要是由於作為硬質合金粘接劑的Co所引起。碳在Co中有很高的溶解度,因此金剛石在Co上形核孕育期很長,同時Co對於石墨的形成有明顯的促進作用,因此金剛石是在表面上形成的石墨層上面形核和生長,導致金剛石膜和硬質合金襯底的結合力極差。在20世紀80年代和90年代無數研究者曾為此嘗試了幾乎一切可以想到的辦法,今天,金剛石膜與硬質合金工具襯底結合力差的問題已經基本解決。盡管仍有繼續提高的餘地,但已經可以滿足工業化應用的要求。在20世紀後期,國外出現了可以用於金剛石薄膜塗層工具大批量工業化生產的設備,一次可以沉積數百隻硬質合金鑽頭或刀片,拉開了金剛石薄膜塗層工具產業化的序幕。一些專門從事金剛石膜塗層工具生產的公司在國外相繼出現。

目前,金剛石薄膜塗層工具主要上市產品包括:金剛石膜塗層硬質合金車刀、銑刀、麻花鑽頭、端銑刀等等。從目前國外市場的銷售情況來看,銷售量最大的是端銑刀、鑽頭和銑刀。大量用於加工復合材料和汽車工業中廣泛應用的大型石墨模具,以及其它難加工材料的加工。可轉位金剛石膜塗層車刀的銷售情況目前並不理想。這是因為可轉位金剛石膜塗層刀片的市場主要是現代化汽車工業的數控加工中心,用於高硅鋁合金活塞和輪轂等的自動化加工。這些全自動化的數控加工中心對刀具性能重復性的要求十分嚴格,目前的金剛石膜塗層工具暫時還不能滿足要求,需要進一步解決產品檢驗和生產過程質量監控的技術。

目前國外金剛石膜塗層工具市場規模大約在數億美元左右,僅僅一家只有20多人的小公司(美國SP3公司),去年的銷售額就達2千多萬美元。

國內目前尚無金剛石膜塗層產品上市。國內不少單位,如北京科技大學、上海交大、廣東有色院、勝利油田東營迪孚公司、吉林大學、北京天地金剛石公司等都在進行金剛石膜塗層硬質合金工具的研發,目前已在金剛石膜的結合力方面取得實質性進展。北京科技大學採用滲硼預處理工藝(已申請專利)成功地解決了金剛石膜的結合力問題,所研製的金剛石膜塗層車刀和銑刀在加工Si-12%AI合金時壽命可穩定提高20-30倍。並已成功研發出「強電流直流擴展電弧等離子體CVD"金剛石膜塗層設備(已申請專利)。該設備將通常金剛石膜沉積設備的平面沉積方式改為立體(空間)沉積,沉積空間區域很大,可容許金剛石膜塗層工具的工業化生產。該設備可保證在工具軸向提供很大的金剛石膜均勻沉積范圍,因此特別適合於麻花鑽頭、端銑刀之類細長且形狀復雜工具的沉積。目前已經解決這類工具金剛石膜沉積技術問題,所制備的金剛石膜塗層硬質合金鑽頭在加工碳化硅增強鋁金屬基復合材料時壽命提高20倍以上。目前能夠制備的金剛石膜塗層硬質合金鑽頭最小直徑為lmin。目前正在和國內知名設備製造廠商(北京長城鈦金公司)合作研發工業化商品設備,生產能力為每次沉積硬質合金鑽頭(或刀片)300隻以上,預計年內可投放國內外市場。
3 類金剛石膜(DLC)

類金剛石膜(DLC)是一大類在性質上和金剛石類似,具有8p2和sp3雜化的碳原子空間網路結構的非晶碳膜。依據制備方法和工藝的不同,DLC的性質可以在非常大的范圍內變化,既有可能非常類似於金剛石,也有可能非常類似於石墨。其硬度、彈性模量、帶隙寬度、光學透過特性、電阻率等等都可以依據需要進行「剪裁」。這一特性使DLC深受研究者和應用部門的歡迎。

DLC的制備方法很多,採用射頻CVD、磁控濺射、激光淀積(PLD)、離子束濺射、真空磁過濾電弧離子鍍、微波等離子體CVD、ECR(電子迴旋共振)CVD等等都可以制備DLC。

DLC的類型也很多,通常意義上的DLC含有大量的氫,因此也叫a:C—H。但也可制備基本上不含氫的DLC,叫做a:c。採用高能激光束燒蝕石墨靶的方法獲得的DLC具有很高的sp3含量,具有很高的硬度和較大的帶隙寬度,曾被稱為「非晶金剛石」(Amorphorie Diamond)膜。採用真空磁過濾電弧離子鍍方法制備的DLC中sp3含量也很高,叫做Ta:C(Tetragonally Bonded Amorphous Carbon)。

DLC具有類似於金剛石的高硬度(10GPa-50GPa)、低摩擦系數(0.1一0.3)、可調的帶隙寬度(1_2eV~3eV)、可調的電阻率和折射率、良好光學透過性(在厚度很小的情況下)、良好的化學惰性和生物相容性。且沉積溫度很低(可在室溫沉積),可在許多金剛石膜難以沉積的襯底材料(包括鋼鐵)上沉積。因此應用范圍相當廣泛。典型的應用包括:高速鋼、硬質合金等工具的硬質塗層、硬磁碟保護膜、磁頭保護膜、高速精密零部件耐磨減摩塗層、紅外光學元器件(透鏡和窗口)的抗劃傷、耐磨損保護膜、Ge透鏡和窗口的增透膜、眼鏡和手錶表殼的抗擦傷、耐磨摜保護膜、人體植入材料的保護膜等等。

DLC在技術上已經成熟,在國外已經達到半工業化水平,形成具有一定規模的產業。深圳雷地公司在DLC的產業化應用方面走在國內前列。不少單位,如北京師范大學、中科院上海冶金所、北京科技大學、清華大學、廣州有色院、四川大學等都正在進行或曾經進行過DLC的研究和應用開發工作。
DLC的主要缺點是:(1)內應力很大,因此厚度受到限制,一般只能達到lum~21um以下;(2)熱穩定性較差,含氫的a:C-H薄膜中的氫在400℃左右就會逐漸逸出,sp2成分增加,sp3成分降低,在大約500℃以上就會轉變為石墨。

5 碳氮膜

自從Cohen等人在20世紀90年代初預言在C-N體系中可能存在硬度可能超過金剛石的β-C>3N4相以後,立即就在全球范圍內掀起了一股合成β-C3N4的研究狂潮。國內外的研究者爭先恐後,企圖第一個合成出純相的β-C3N4晶體或晶態薄膜。但是,經過了十餘年的努力,至今並無任何人達到上述目標。在絕大多數情況下,得到的都是一種非晶態的CNx薄膜,膜中N/C比與薄膜制備的方法和具體工藝有關。盡管沒有得到Cohen等人所預測超過金剛石硬度的β-C3N4晶體,但已有的研究表明CNx薄膜的硬度可達15GPa-50GPa,可與DLC相比擬。同時CNx薄膜具有十分奇特的摩擦磨損特性。在空氣中,cNx薄膜的摩擦因數為O.2-O.4,但在N2,CO2和真空中的摩擦因數為O.01-O.1。在N2氣氛中的摩擦因數最小,為O.01,即使在大氣環境中向實驗區域吹氮氣,也可將摩擦因數降至0.017。因此,CNx薄膜有望在摩擦磨損領域獲得實際應用。除此之外。CNx薄膜在光學、熱學和電子學方面也可能有很好的應用前景。

採用反應磁控濺射、離子束淀積、雙離子束濺射、激光束淀積(PLD)、等離子體輔助CVD和離子注人等方法都可以制備出CNx薄膜。在絕大多數情況下,所制備薄膜都是非晶態的,N/C比最大為45%,也即CNx總是富碳的。與C-BN的情況類似,CNx薄膜的制備需要離子的轟擊,薄膜中存在很大的內應力,需要進一步降低薄膜內應力,提高薄膜的結合力才能獲得實際應用。至於是否真正能夠獲得硬度超過金剛石的B-C3N4,現在還不能作任何結論。

6 納米復合膜和納米復合多層膜

以納米厚度薄膜交替沉積獲得的納米復合膜的硬度與每層薄膜的厚度(調制周期)有關,有可能高於每一種組成薄膜的硬度。例如,TiN的硬度為2l GPa,NbN的硬度僅為14GPa,但TiN/NbN納米復合多層膜的硬度卻為5lGPa。而TiYN/VN納米復合多層膜的硬度競高達78GPa,接近了金剛石的硬度。最近,納米晶粒復合的TiN/SiNx薄膜材料的硬度達到了創記錄的105GPa,可以說完全達到了金剛石的硬度。這一令人驚異的結果曾經過同一研究組的不同研究者和不同研究組的反復重復驗證,證明無誤。這可能是第一次獲得硬度可與金剛石相比擬的超硬薄膜材料。其意義是顯而易見的。

關於為何能夠獲得金剛石硬度的解釋並無完全令人信服的定論。有人認為在納米多層復合膜的情況下,納米多層膜的界面有效地阻止了位錯的滑移,使裂紋難以擴展,從而引起硬度的反常升高。而在納米晶粒復合膜的情況下則可能是在TiN薄膜的納米晶粒晶界和高度彌散分布的納米共格SiNx粒子周圍的應變場所引起的強化效應導致硬度的急劇升高。

無論上述的理論解釋是否完全合理,這種納米復合多層膜和納米晶粒復合膜應用前景是十分明朗的。納米復合多層膜不僅硬度很高,摩擦系數也較小,因此是理想的工具(模具)塗層材料。它們的出現向金剛石作為最硬的材料的地位提出了嚴峻的挑戰。同時在經濟性上也有十分明顯的優勢,因此具有非常好的市場前景。但是,由於還有一些技術問題沒有得到解決,目前暫時還未在工業上得到廣泛應用。

可以想見隨著技術上的進一步成熟,這類材料可能迅速獲得工業化應用。雖然鈉米多層膜和鈉米晶粒復合膜已經對金剛石硬度最高的地位提出了嚴峻的挑戰,但就我所見,我認為它們不可能完全代替金剛石。金剛石膜是一種用途十分廣泛的多功能材料,應用並不局限於超硬材料。且金剛石膜可以做成厚度很大(超過2mm)的自支撐膜,對於納米復合多層膜和納米復合膜來說,是無論如何也不可能的。

僅供參考,請自借鑒

希望對您有幫助

Ⅳ 求一篇機械專業畢業設計的開題報告,題目是液壓傳動設計的開題報告

I can HELP.,

Ⅳ 機械專業畢業設計開題報告

很好做的呢
我這邊有現成的資料
你可以拿去看下
很整套的跟你的這個是很符合的
具體的我可以給你很詳細的材料
你找我
我來幫你
交流下。。。,,、、、、

Ⅵ 機械類畢業設計開題報告怎麼寫

1課題名稱
數控銑床及加工中心產品設計
2選題理由
製造技術是各國經濟競爭的重要支柱之一,經濟的成功在很大程度上得益於先進的製造技術,而機床是機械製造技術重要的載體,它標志著一個國家的生產能力和技術水平。機床工業是國民經濟的一個重要先行部門,擔負這為國民經濟各部門提供現代化技術裝備的任務,以1994年為例,全世界基礎的消費額達261.7億美元。其中美國的消費額56億美元、中國33.6億美元。所以,在我國國民經濟建設中,機床工業起著重要的作用。然而在機械製造業中,大批大量生產時採用專用機床、組合機床、專用自動線等並配以相應的工裝,這些設備的初期投資費用大、生產准備時間長,並且不適應產品的更新換代。單件小批生產時,由於產品多變而不宜採用專用機床,特別是在國防、航空、航天和深潛的部門,其零件的精度要求非常高,幾何形狀也日趨復雜,且改型頻繁,生產周期短,這就要求迅速適應不同零件的加工。書空機床就是在這樣的背景下產生和發展起來的一種新型自動化機床,它較好的解決了小批量、品種多變化、形狀復雜和精度高的零件的自動化加工問題。隨著計算機技術,特別是微型計算機技術的發展及其在數控機床上的應用,機床數控技術正從普通數控向計算機數控發展。一個國家數控機床的擁有量(相對值),標志著這個國家機械製造業的現代化程度。數控銑床和加工中心因其特有的加工方式及其加工范圍廣在數控機床中佔有重大的比例,因此研究《數控銑床及加工中心產品設計》具有重大意義。
3國內外研究現狀
當今世界,工業發達國家對機床工業高度重視,競相發展機電一體化、高質量、高精、高效、自動化先進機床,以加速工業和國民經濟的發展。長期以來,歐、美、亞在國際市場上相互展開激烈競爭,已形成一條無形戰線,特別是隨微電子、計算機技術的進步,數控機床在20世紀80年代以後加速發展,各方用戶提出更多需求,早已成為四大國際機床展上各國機床製造商競相展示先進技術、爭奪用戶、擴大市場的焦點。中國加入WTO後,正式參與世界市場激烈競爭,今後如何加強機床工業實力、加速數控機床產業發展,實是緊迫而又艱巨的任務。 數控機床出現至今的50年,隨科技、特別是微電子、計算機技術的進步而不斷發展。美、德、日三國是當今世上在數控機床科研、設計、製造和使用上,技術最先進、經驗最多的國家。
例如:在19世紀初時是1mm級,到20世紀初時提高到了0.01mm級.而近30年來,普通機械加工的精度已從0.01mm提高到0.005mm級,精密加工的精度已從1um級提高到0.02um級,超精密加工的精度已從0.~0.01um級進入納米級.在表面粗糙度方面,日本用螢光碳素泡沫拋光劑和細微SiO2粉末拋光工作,成功獲得了小於0.0005um的表面粗糙度.過去們只注意表面粗糙度、波度和紋理等表面特徵,忽視了表面之下0.38mm范圍內的內部效應,即次表面效應對零件可靠性的影響.這方面尚需深入研究,採取相應措施,方能提高產品的質量和使用壽命及可靠性.
中國於1958年研製出第一台數控機床,發展過程大致可分為兩大階段。在1958~1979年間為第一階段,從1979年至今為第二階段。第一階段中對數控機床特點、發展條件缺乏認識,在人員素質差、基礎薄弱、配套件不過關的情況下,一哄而上又一哄而下,曾三起三落、終因表現欠佳,無法用於生產而停頓。主要存在的問題是盲目性大,缺乏實事求是的科學精神。在第二階段從日、德、美、西班牙先後引進數控系統技術,從日、美、德、意、英、法、瑞士、匈、奧、韓國、台灣省共11國(地區)引進數控機床先進技術和合作、合資生產,解決了可靠性、穩定性問題,數控機床開始正式生產和使用,並逐步向前發展。在20餘年間,數控機床的設計和製造技術有較大提高,主要表現在三大方面:培訓一批設計、製造、使用和維護的人才;通過合作生產先進數控機床,使設計、製造、使用水平大大提高,縮小了與世界先進技術的差距;通過利用國外先進元部件、數控系統配套,開始能自行設計及製造高速、高性能、五面或五軸聯動加工的數控機床,供應國內市場的需求,但對關鍵技術的試驗、消化、掌握及創新卻較差。至今許多重要功能部件、自動化刀具、數控系統依靠國外技術支撐,不能獨立發展,基本上處於從仿製走向自行開發階段,與日本數控機床的水平差距很大。存在的主要問題包括:缺乏象日本「機電法」、「機信法」那樣的指引;嚴重缺乏各方面專家人才和熟練技術工人;缺少深入系統的科研工作;元部件和數控系統不配套;企業和專業間缺乏合作,基本上孤軍作戰,雖然廠多人眾,但形成不了合力。
4研究內容:
1. 按圖紙要求制定真確的工藝方案
2. 選擇合理的刀具和切削工藝參數
3. 編寫數控加工程序
5研究方法:
首先閱讀大量相關文獻資料,教材及新聞背景資料,包括機械製造的原理及方法,質量管理應用,數控機床現有技術水準,國際水平探討方面的書籍,報刊.以了解可靠性的內容,質量管理的概況和數控機床領域的基本知識體系.然後通過調研,進一步了解企業現狀及需求.接下來進行分析與設計.確定數據來源的真實准確.再進行系統設計
由於現有設備所採用的是分析設計方法,因此可以首先對原有設備進行適當的測試與調試,然後使用快速原型方法來提高加工質量,等得到企業有效的反饋信息後再可以考慮用統計分析法和棕合法進行接下去的再分析,再設計
6進展按排:
1准備階段(12月15日~12月30日).搜集有關資料,准備參考資料
2完成開題報告及論文大綱交老師批閱(1月1日~1月15日)
3依據論文大綱完成論文一稿交老師批閱(1月16日~3月10日)
4完成論文二稿交老師批閱(3月11日~4月10日)
5完成三稿(4月11日~4月30日)
6完成相關論文簡介、答辯提綱,准備答辯階段(5月1日~5月10日)
7畢業設計答辯階段(5月中旬)
7主要參考資料:
1周昌治,楊忠鑒,趙之淵,陳廣凌,機械製造工藝學,,重慶大學出版社出版,2006年12月第6次印刷,
2張麗華,馬立克,數控編程與加工技術,大連理工大學出版社,2006年7月第2版
4. 楊建明,數控加工工藝與編程,北京理工大學出版社,2007年4月第3次印刷
5. 呂天玉,宮波,公差配合與測量技術,大連理工大學出版社,2006年7月第3次印刷
6. 高波,機械製造基礎,大連理工大學出版社,2006年8月第1次印刷
7. 黃鶴汀,王芙蓉,金屬切削機床(上冊),機械工業出版社,2006年7月第1版

Ⅶ 機械專業畢業設計(論文)開題報告 機械專業能有什麼題好寫一點的嗎

具體是什麼你都沒說 別人怎麼提供不大又實用的東西
我給你詳細的

Ⅷ 跪求畢業設計開題報告,關於機械設計的開題報告!!!

課題性質(打√選擇)
設計(√)
論文( )
一、文獻綜述
1.液壓AGC簡介
厚度自動控制(Automatie Gauge control簡稱AGC)在鋼板軋機,特別是帶鋼軋機上得到普遍應用,從50年代初到現在,已發展到十分成熟的地步。AGC系統的作用是消除軋件厚度的偏差。
傳統的電動AGC由於調節精度差,效率低,響應速度慢等原因,已被液壓AGC取代。液壓AGC系統包括測厚,厚度比較和調節,輥縫調整三部分。一般由位置反饋迴路和壓力反饋迴路組成。兩個反饋迴路的反饋信號經過綜合比例調節器進行比較後,輸入電液伺服閥,調整閥的流量,控制液壓缸的行程,從而實現軋件厚度的自動控制。
2.課題研究意義
現在我國大型軋機用液壓AGC伺服油缸的試驗與診斷技術還不成熟。大型軋機伺服油缸行程短、軋制力大、頻率響應高,國內還沒有合適的方法、標准及相關技術,往往無法判斷故障部位,會造成備件和人力的大量浪費。因此,研製精度高、適宜檢測大型軋機AGC伺服油缸的試驗設備具有重要意義。
3. 現代軋機AGC發展現狀
我國現有中厚板軋機27套,其中輥身長度在3000mm以上的中厚板軋機有7套,其餘的輥身長度為3000mm。我國最寬的軋機為鞍鋼4300mm厚板軋機,該軋機是改造過的國外二手設備。我國有4200mm厚板軋機1套,現安裝在武鋼。3500mm厚板軋機2套,分別安裝在濟鋼和秦皇島軋鋼廠。另外,3300mm軋機安裝在首鋼和上鋼三廠,2800mm中板軋機分別安裝在武鋼、邯鋼、安鋼、柳鋼、酒鋼等廠[1]。
國外有建造緊湊式連軋機的趨勢。例如,日本松島公司安裝了三機架六輥軋機,供冷軋帶鋼,帶鋼初始厚度為0.4~3.5mm,最終厚度為0.15~1.0mm,寬600~1300mm,軋制速度可達35m/s,卷重可達50t。此軋機的每架機架都包括工作輥、中間輥和支承輥,軋輥直徑分別為385mm、510mm和1300mm,輥身長度為1420mm。
4. 軋機機架作用
軋機是鋼鐵板材生產線的主要設備,機架是軋機的重要部件,它承受軋機工作的全部軋制力。在軋制過程中,被軋制的金屬作用在軋輥上的全部軋制力,通過軋輥軸承、軸承座、壓下螺絲及螺母傳給機架,並由機架全部吸收不再傳給地基。因此,機架必須有足夠的強度與剛度[2]。
二、設計(論文)主要內容
總體結構的初步確定:掌握AGC液壓系統的基本組成,結構和軋制原理;
設計主要內容:
1.液壓缸試驗台總體結構設計
2.機架結構的設計
3.機架強度,彈性變形計算

三、設計(研究)方案
1.調研,搜集資料,閱讀有關資料;
2.了解AGC系統基本組成,結構和軋制原理;
3.總體結構的初步確定;
4.設計主要內容:
⑴液壓缸試驗台總體結構設計
⑵機架結構的設計
⑶機架強度,彈性變形計算
5.畢業論文的撰寫,1.2萬字以上;
6.翻譯英文資料1000字元以上;
7.畢業答辯。
四、工作進度安排
階段
應完成的主要工作
計劃起止時間
1
查閱、收集相關資料,寫出開題報告
08.3.17-08.3.30
2
試驗台的總體結構設計
08.3.31-08.4.13
3
機架結構設計
08.4.14-08.5.04
4
機架強度及彈性變形計算
08.5.05-08.5.25
5
論文整理及翻譯英文文獻
08.5.26-08.6.01
6
評閱及答辯
08.6.02-08.6.15

五、主要參考文獻
[1]王鳳喜.大型軋機的發展.重型機械科技.2000(1):50
[2]韓波.1500軋機機架的有限元模擬優化.重工與起重技術.2006(3):14
[3]成大先.機械設計手冊—液壓控制.化學工業出版社,2004
[4]成大先.機械設計手冊—液壓傳動.化學工業出版社,2004
[5]孫占剛.軋機閉式機架的有限元分析及優化設計.冶金設備.2004(3):8~11
[6]王洪斌.大噸位液壓缸試驗台結構分析.工程機械.1997(10):26~27
[7]曹玉平,閻詳安.液壓傳動與控制.天津大學出版社,2003

六、指導教師意見

簽字:
年 月 日
七、系畢業設計( 論文)工作領導小組意見

簽字:
年 月 日